login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers whose divisors can be arranged as equilateral triangle.
2

%I #24 Jul 07 2023 14:47:48

%S 1,4,9,12,18,20,25,28,32,44,45,48,49,50,52,63,68,75,76,80,92,98,99,

%T 112,116,117,121,124,144,147,148,153,162,164,169,171,172,175,176,188,

%U 207,208,212,236,242,243,244,245,261,268,272,275,279,284,289,292,304,316

%N Numbers whose divisors can be arranged as equilateral triangle.

%C A000005(a(n))=A000217(m) for some m; A000005(A081620(n))=n*(n+1)/2.

%C Unit together with natural numbers n with number of nontrivial divisors equal to a perfect power. - _Juri-Stepan Gerasimov_, Oct 30 2009

%C This is wrong, e.g. a(29)=144, A000005(144)=15 and A075802(15-2)=0, see also example. - _Reinhard Zumkeller_, Jul 12 2013

%H Reinhard Zumkeller, <a href="/A081619/b081619.txt">Table of n, a(n) for n = 1..10000</a>

%F A010054(A000005(n)) = 1. - _Reinhard Zumkeller_, Jul 12 2013

%e n = 48, A000005(48) = 10, A010054(10) = 1 or A000217(4) = 10:

%e . 1

%e . 2 3

%e . 4 6 8

%e . 12 16 24 48 therefore 48 is a term: a(12) = 48;

%e n = 144, A000005(144) = 15, A010054(15) = 1 or A000217(5) = 15:

%e . 1

%e . 2 3

%e . 4 6 8

%e . 9 12 16 18

%e . 24 36 48 72 144 therefore 48 is a term: a(29) = 144.

%o (Haskell)

%o a081619 n = a081619_list !! (n-1)

%o a081619_list = filter ((== 1) . a010054 . a000005) [1..]

%o -- _Reinhard Zumkeller_, Jul 12 2013

%o (PARI) is(n)=ispolygonal(numdiv(n),3) \\ _Charles R Greathouse IV_, Oct 16 2015

%Y Cf. A000027, A001694, A081619, A144925.

%K nonn

%O 1,2

%A _Reinhard Zumkeller_, Mar 24 2003

%E Example revised and extended by _Reinhard Zumkeller_, Jul 12 2013