

A081592


A self generating sequence: "there are n a(n)'s in the sequence". Start with 1,2 and use the rule : "a(n)=k implies there are n following k's (k is 1 or 2)".


2



1, 2, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Lengths of runs of consecutive 1's or 2's are : 1,1,2,3,9,21,117,588 ...


LINKS

Table of n, a(n) for n=1..105.


EXAMPLE

Sequence begins : 1,2 . Since a(1)=1 there is only one following "1", gives 1,2,1. Since a(2)=2 there are 2 following "2's", gives 1,2,1,2,2. Since a(3)=1 there are 3 following "1's" 1,2,1,2,2,1,1,1 etc.


CROSSREFS

Sequence in context: A135689 A029438 A304274 * A255934 A085028 A087888
Adjacent sequences: A081589 A081590 A081591 * A081593 A081594 A081595


KEYWORD

nonn


AUTHOR

Benoit Cloitre, Apr 21 2003


STATUS

approved



