login
A081506
Primes of the form 2^k + 3^k + 4^k.
2
3, 29, 353, 4889, 72353, 105312291668560568089831550410013687058921146068446092937783402353
OFFSET
1,1
COMMENTS
The next term (a(7)) has 202 digits. - Harvey P. Dale, Aug 20 2015
LINKS
FORMULA
a(n) = A074526(A081507(n)). - Amiram Eldar, Aug 17 2024
EXAMPLE
k = 2: 2^2 + 3^2 + 4^2 = 4 + 9 + 16 = 29, which is prime.
MATHEMATICA
Do[s=2^w+3^w+4^w; If[IntegerQ[w/100], Print[{w}]]; If[PrimeQ[s], Print[{w, s}]], {w, 0, 1000}]
Select[Table[2^n+3^n+4^n, {n, 0, 200}], PrimeQ] (* Harvey P. Dale, Aug 20 2015 *)
PROG
(PARI) lista(kmax) = {my(p); for(k = 0, kmax, p = 2^k + 3^k + 4^k; if(isprime(p), print1(p, ", "))); } \\ Amiram Eldar, Aug 17 2024
CROSSREFS
Sequence in context: A323569 A049038 A091646 * A168127 A361220 A262640
KEYWORD
nonn
AUTHOR
Labos Elemer, Apr 15 2003
STATUS
approved