Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 08 2022 08:45:09
%S 1,5,17,55,189,681,2519,9451,35765,136153,520695,1998745,7696467,
%T 29716025,115000947,445962899,1732525861,6741529113,26270128535,
%U 102501265057,400411345659,1565841089321,6129331763923,24014172955545,94163002754699,369507926510401
%N Start with Pascal's triangle; form a rhombus by sliding down n steps from top on both sides then sliding down inwards to complete the rhombus and then deleting the inner numbers; a(n) = sum of entries on perimeter of rhombus.
%H G. C. Greubel, <a href="/A081495/b081495.txt">Table of n, a(n) for n = 1..1000</a>
%F a(0)=1 for n>0 a(n)=binomial(2*n, n)-binomial(2*n-2, n-1)+2*n-3. - _Benoit Cloitre_, Sep 10 2003
%F G.f.: ((1-x)^3 - (1-2*x-x^3)*sqrt(1-4*x))/((1-x)^2*sqrt(1-4*x)). - _G. C. Greubel_, Aug 13 2019
%e The rhombus pertaining to n = 4 is obtained from the solid rhombus
%e .....1
%e ...1...1
%e .1...2...1
%e 1..3...3...1
%e ..4..6...4
%e ...10..10
%e .....20
%e giving
%e .....1
%e ...1...1
%e .1.......1
%e 1..........1
%e ..4......4
%e ...10..10
%e .....20
%e and the sum of all the numbers is 55, a(4) = 55.
%p seq(coeff(series(((1-x)^3 - (1-2*x-x^3)*sqrt(1-4*x))/((1-x)^2*sqrt(1-4*x) ), x, n+1), x, n), n = 1..25); # _G. C. Greubel_, Aug 13 2019
%t With[{C = CatalanNumber}, Table[If[n==1, 1, (n+1)*C[n] -n*C[n-1] +2*n-3], {n, 25}]] (* _G. C. Greubel_, Aug 13 2019 *)
%o (PARI) vector(25, n, b=binomial; if(n==1,1,b(2*n, n)-b(2*(n-1), n-1) +2*n -3)) \\ _G. C. Greubel_, Aug 13 2019
%o (Magma) C:=Catalan; [1] cat [(n+1)*C(n) -n*C(n-1) +2*n-3: n in [2..25]]; // _G. C. Greubel_, Aug 13 2019
%o (Sage) b=binomial; [1]+[b(2*n, n)-b(2*(n-1), n-1) +2*n -3 for n in (2..25)] # _G. C. Greubel_, Aug 13 2019
%o (GAP) B:=Binomial;; Concatenation([1], List([2..25], n-> B(2*n, n)-B(2*(n-1), n-1) +2*n -3)); # _G. C. Greubel_, Aug 13 2019
%Y Cf. A081494, A081496, A081497.
%K nonn
%O 1,2
%A _Amarnath Murthy_, Mar 25 2003
%E More terms from _Benoit Cloitre_, Sep 10 2003