login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Leading term of n-th row of A081491.
4

%I #24 Oct 18 2022 15:01:48

%S 1,2,4,9,19,36,62,99,149,214,296,397,519,664,834,1031,1257,1514,1804,

%T 2129,2491,2892,3334,3819,4349,4926,5552,6229,6959,7744,8586,9487,

%U 10449,11474,12564,13721,14947,16244,17614,19059,20581,22182,23864,25629

%N Leading term of n-th row of A081491.

%C First differences are given by A002522 = n^2 + 1. Second differences are odd numbers given by A005408.

%C a(1)=1, a(2)=2, (a(n+1) -a(n)) - (a(n) -a(n-1)) = 2*(n-1)-1. - _Ben Paul Thurston_, Aug 22 2009

%H G. C. Greubel, <a href="/A081490/b081490.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F a(1) = 1, a(n) = A081489(n-1) + 1.

%F From _R. J. Mathar_, Feb 06 2010: (Start)

%F G..f: x*(1-2*x+2*x^2+x^3)/(x-1)^4.

%F a(n) = n*(2*n^2 -9*n +19)/6 -1. (End)

%F a(n) = (n-2)^2 + a(n-1)+1, n>1. - _Gary Detlefs_, Jun 29 2010

%F a(1)=1, a(2)=2, a(3)=4, a(4)=9, a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - _Harvey P. Dale_, Apr 30 2011

%p with (combinat):a:=n->sum(fibonacci(3,i), i=0..n):seq(a(n)+1, n=-1..42); # _Zerinvary Lajos_, Apr 25 2008

%t Rest[CoefficientList[Series[x (1-2x+2x^2+x^3)/(x-1)^4,{x,0,50}],x]] (* or *) LinearRecurrence[{4,-6,4,-1}, {1,2,4,9}, 50] (* _Harvey P. Dale_, Apr 30 2011 *)

%o (PARI) vector(50, n, (2*n^3-9*n^2+19*n-6)/6) \\ _G. C. Greubel_, Aug 13 2019

%o (Magma) [(2*n^3-9*n^2+19*n-6)/6: n in [1..50]]; // _G. C. Greubel_, Aug 13 2019

%o (Sage) [(2*n^3-9*n^2+19*n-6)/6 for n in (1..50)] # _G. C. Greubel_, Aug 13 2019

%o (GAP) List([1..50], n-> (2*n^3-9*n^2+19*n-6)/6); # _G. C. Greubel_, Aug 13 2019

%Y Cf. A002522, A005408, A081489, A081491, A081492.

%K nonn,easy

%O 1,2

%A _Amarnath Murthy_, Mar 25 2003

%E More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 29 2003