%I #13 Oct 29 2022 04:51:00
%S 2,5,17,353,87617,9045146753,60804857528809666817,
%T 4138643330264389621194448797227488932353,
%U 13864359953311401274177801350481278132199085263747363330276605034095638011503617
%N Consider the mapping f(a/b) = (a^2+b^2)/(a^2-b^2) from rationals to rationals. Starting with 2/1 (a=2, b=1) and applying the mapping to each new (reduced) rational number gives 2/1, 5/3, 17/8, 353/225, ... . Sequence gives values of the numerators.
%C For the mapping g(a/b) = (a^2+b)/(a+b^2), starting with 2/1 the same procedure leads to the periodic sequence 2, 5/3, 2, 5/3, ...
%t nxt[n_]:=Module[{a=Numerator[n],b=Denominator[n]}, (a^2+b^2)/(a^2-b^2)]; Numerator/@NestList[nxt,2/1,10] (* _Harvey P. Dale_, Mar 19 2011 *)
%o (PARI) {r=2; for(n=1,9,a=numerator(r); b=denominator(r); print1(a,","); r=(a^2+b^2)/(a^2-b^2))}
%Y Cf. A000058, A081461, A081462, A081466.
%K nonn
%O 1,1
%A _Amarnath Murthy_, Mar 22 2003
%E Edited and extended by _Klaus Brockhaus_, Mar 24 2003