login
A081447
Smallest squares such that partial sums of the sequence plus 5 are primes.
3
36, 576, 36, 144, 144, 36, 36, 36, 144, 36, 144, 36, 144, 144, 36, 144, 36, 36, 324, 36, 324, 144, 900, 144, 576, 324, 576, 36, 144, 324, 900, 36, 1764, 36, 36, 36, 144, 2304, 36, 2304, 324, 36, 144, 4356, 144, 900, 900, 900, 1296, 36, 36, 144, 324, 36, 144
OFFSET
1,1
COMMENTS
Members are of the form (6m)^2, m integer (A081448). Proof: Since primes are 6k+1,6k+5, squares must be 6k,6k+2. The latter squares do not exist.
PROG
(PARI) t=5; for(n=2, 100, for(k=1, 10^8, if(isprime(k^2+t), print1(k^2", "); t=t+k^2; break)))
CROSSREFS
Sequence in context: A186309 A374499 A159656 * A218311 A183356 A099764
KEYWORD
nonn
AUTHOR
Ralf Stephan, Mar 21 2003
STATUS
approved