Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #44 Mar 17 2018 04:13:20
%S 0,1,2,8,32,184,1104,8448,67584,648576,6485760,74972160,899665920,
%T 12174658560,170445219840,2643856588800,42301705420800,
%U 740051782041600,13320932076748800,259500083163955200,5190001663279104000,111422936937037824000,2451304612614832128000
%N E.g.f.: log((1+x) / (1-x)) / (2*(1-x)).
%C Number of cycles of odd cardinality in all permutations of [n]. Example: a(3)=8 because among (1)(2)(3), (1)(23), (12)(3), (13)(2), (132), (123) we have eight cycles of odd length. - _Emeric Deutsch_, Aug 12 2004
%C a(n) is a function of the harmonic numbers. a(n) = n!*h(n) - n!/2 * h(floor(n/2)), where h(n) = Sum_{k=1..n} 1/k. - _Gary Detlefs_, Aug 06 2010
%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, Exercise 3.3.13
%H N. J. A. Sloane, <a href="/A081358/b081358.txt">Table of n, a(n) for n = 0..30</a>
%H B. A. Kuperschmidt, <a href="http://www.sm.luth.se/~norbert/home_journal/electronic/72brev3.ps">... And free lunch for all.</a>
%H B. A. Kuperschmidt, Journal of Nonlinear Mathematical Physics 2000 v. 7 no. 2, <a href="http://arXiv.org/abs/math.HO/0004188">A Review of Bruce C. Berndt's Ramanujan's Notebooks parts I-V</a>
%F E.g.f.: log((1+x) / (1-x)) / (2*(1-x)).
%F a(n) = n! * Sum_{k=0..n, k odd} 1/k.
%F a(n) = n!/2*(Psi(ceiling(n/2)+1/2)+gamma+2*log(2)). - _Vladeta Jovovic_, Oct 20 2003
%F a(n) = n!*Sum_{k=1..n} (-1)^(k+1)*2^(k-1)*binomial(n, k)/k. - _Vladeta Jovovic_, Aug 12 2005
%F a(n) = n*a(n-1) + ((-1)^(n+1)+1)/2*(n-1)!. - _Gary Detlefs_, Aug 06 2010
%F a(n) = A000254(n) - A092691(n). - _Gary Detlefs_, Aug 06 2010
%F a(n) ~ n!/2 * (log(n) + gamma + log(2)), where gamma is the Euler-Mascheroni constant (A001620). - _Vaclav Kotesovec_, Oct 05 2013
%F a(2*n + 1) = A049034(n).
%F E.g.f.: arctanh(x)/(1 - x). - _Ilya Gutkovskiy_, Dec 19 2017
%e G.f. = x + 2*x^2 + 8*x^3 + 32*x^4 + 184*x^5 + 1104*x^6 + 8448*x^7 + ...
%t nn = 20; Range[0, nn]! CoefficientList[
%t D[Series[(1 - x^2)^(-1/2) ((1 + x)/(1 - x))^(y/2), {x, 0, nn}], y] /. y -> 1, x] (* _Geoffrey Critzer_, Aug 27 2012 *)
%t a[ n_] := If[ n < 0, 0, n! Sum[ 1/k, {k, 1, n, 2}]]; (* _Michael Somos_, Jan 06 2015 *)
%t a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Log[ (1 + x) / (1 - x)] / (2 (1 - x)), {x, 0, n}]]; (* _Michael Somos_, Jan 06 2015 *)
%o (PARI) {a(n) = if( n<1, 0, n! * polcoeff( log(1 + 2 / (-1 + 1 / (x + x * O(x^n)))) / (2 * (1-x)), n))};
%o (PARI) {a(n) = if( n<0, 0, n! * sum(k=1, n, (k%2)/k))}; /* _Michael Somos_, Sep 19 2006 */
%o (PARI) first(n) = x='x+O('x^n); Vec(serlaplace(atanh(x)/(1 - x)), -n) \\ _Iain Fox_, Dec 19 2017
%Y Cf. A000254, A001640, A049034, A092691, A151884.
%K nonn
%O 0,3
%A _Michael Somos_, Mar 18 2003