login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081202
8th binomial transform of (0,1,0,1,0,1,....), A000035.
8
0, 1, 16, 193, 2080, 21121, 206896, 1979713, 18640960, 173533441, 1602154576, 14701866433, 134294124640, 1222488408961, 11099284691056, 100571785292353, 909893629141120, 8222275592839681, 74233110849544336, 669726411243809473, 6038936596379658400, 54430221633714537601
OFFSET
0,3
COMMENTS
Binomial transform of A081201.
From Wolfdieter Lang, Jul 17 2017: (Start)
For a combinatorial interpretation of a(n) with special 9-letter words of length n see the comment in A081200 on the 7-letter analog.
The binomial transform of {a(n)}_{n >=0} is A081203, the 10-letter analog.
(End)
FORMULA
a(n) = 16*a(n-1) - 63*a(n-2), a(0)=0, a(1)=1.
G.f.: x/((1-7*x)*(1-9*x)).
a(n) = (9^n - 7^n)/2.
E.g.f.: exp(7*x)*(exp(2*x) - 1)/2. - Stefano Spezia, Jul 23 2024
MATHEMATICA
Join[{a=0, b=1}, Table[c=16*b-63*a; a=b; b=c, {n, 40}]] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2011 *)
CoefficientList[Series[x / ((1 - 7 x) (1 - 9 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 07 2013 *)
PROG
(Magma) [9^n/2 - 7^n/2: n in [0..25]]; // Vincenzo Librandi, Aug 07 2013
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 11 2003
STATUS
approved