Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Jul 23 2024 18:55:10
%S 0,1,10,76,520,3376,21280,131776,807040,4907776,29708800,179301376,
%T 1080002560,6496792576,39047864320,234555621376,1408407470080,
%U 8454739787776,50745618595840,304542431051776,1827529464217600,10966276296933376,65802055828111360,394829927154712576
%N 5th binomial transform of (0,1,0,1,...), A000035.
%C Binomial transform of A005059.
%C Conjecture (verified up to a(9)): Number of collinear 4-tuples of points in a 4 X 4 X 4 X ... n-dimensional cubic grid. - _R. H. Hardin_, May 24 2010
%C a(n) is also the total number of words of length n, over an alphabet of six letters, of which one of them appears an odd number of times. See a Lekraj Beedassy, Jul 22 2003, comment on A006516 (4-letter case), and the Balakrishnan reference there. For the 2-, 3-, 5- and 7-letter case analogs see A131577, A003462, A005059 and A081200, respectively. - _Wolfdieter Lang_, Jul 16 2017
%H Vincenzo Librandi, <a href="/A081199/b081199.txt">Table of n, a(n) for n = 0..200</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-24).
%F a(n) = 10*a(n-1) - 24*a(n-2) with n>1, a(0)=0, a(1)=1.
%F G.f.: x/((1-4*x)*(1-6*x)).
%F a(n) = 6^n/2 - 4^n/2.
%F E.g.f.: exp(4*x)*(exp(2*x) - 1)/2. - _Stefano Spezia_, Jul 23 2024
%p seq(add(2^(2*n-k)*binomial(n,k)/2,k=1..n),n=0..20); # _Zerinvary Lajos_, Apr 18 2009
%t CoefficientList[Series[x / ((1 - 4 x) (1 - 6 x)), {x, 0, 30}], x] (* _Vincenzo Librandi_, Aug 07 2013 *)
%t LinearRecurrence[{10, -24}, {0, 1}, 21] (* _Michael De Vlieger_, Jul 16 2017 *)
%o (Magma) [6^n/2-4^n/2: n in [0..25]]; // _Vincenzo Librandi_, Aug 07 2013
%Y Cf. A000035, A003462, A005059, A006516, A016149, A081200 (binomial transform of a(n), and 7-letter case), A131577.
%K nonn,easy
%O 0,3
%A _Paul Barry_, Mar 11 2003