login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 2, then a(n) = greatest prime factor of (a(n-1)^2+2).
2

%I #17 Jun 21 2022 18:30:51

%S 2,3,11,41,17,97,3137,13499,60741001,14158633,7424699571433,

%T 18375387908679124623224497,152868746152697352174823427,

%U 114585848725150699093848122619332057,2117552824725684501808097956698634897,34759922213207174486822944687721824905112848905750167403101021576017059,57191433705834025254780615830990723253902440879104281100230506839641

%N a(1) = 2, then a(n) = greatest prime factor of (a(n-1)^2+2).

%D Teske, Edlyn and Williams, Hugh C., A note on Shanks's chains of primes, in Algorithmic number theory (Leiden, 2000), 563-580, Lecture Notes in Comput. Sci., 1838, Springer, Berlin, 2000.

%H Dennis Langdeau, <a href="/A081173/b081173.txt">Table of n, a(n) for n = 1..20</a>

%e a(2) = 3 because 3 is greatest prime factor of 2^2+2. a(3)=11 because 3^2+2 is prime.

%t a[1]=2; a[n_] := a[n]=FactorInteger[a[n-1]^2+2][[ -1, 1]]

%t NestList[FactorInteger[#^2+2][[-1,1]]&,2,15] (* _Harvey P. Dale_, Jun 21 2022 *)

%Y Cf. A083388.

%K nonn

%O 1,1

%A _Donald S. McDonald_, Apr 17 2003

%E More terms from _Donald S. McDonald_, Apr 20 2003

%E More terms from _Robert G. Wilson v_ and _Dean Hickerson_, Apr 22 2003

%E More terms from Dennis Langdeau (dlangdea(AT)sfu.ca), Jun 18 2006

%E Definition clarified by _Harvey P. Dale_, Jun 21 2022