login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

11th binomial transform of (0,1,0,0,0,0,0,...).
7

%I #28 Jan 17 2024 01:14:02

%S 0,1,22,363,5324,73205,966306,12400927,155897368,1929229929,

%T 23579476910,285311670611,3423740047332,40799568897373,

%U 483317970015034,5696247503748615,66835970710650416,781145407680726737

%N 11th binomial transform of (0,1,0,0,0,0,0,...).

%H Vincenzo Librandi, <a href="/A081127/b081127.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (22,-121).

%F a(n) = 22*a(n-1) - 121*a(n-2), with a(0)=0, a(1)=1.

%F a(n) = n*11^(n-1).

%F G.f.: x/(1-11*x)^2.

%F a(n) = A003415(11^n). - _Bruno Berselli_, Oct 22 2013

%F From _Amiram Eldar_, Oct 28 2020: (Start)

%F Sum_{n>=1} 1/a(n) = 11*log(11/10).

%F Sum_{n>=1} (-1)^(n+1)/a(n) = 11*log(12/11). (End)

%F E.g.f.: x*exp(11*x). - _G. C. Greubel_, Jan 16 2024

%t a[n_]:=n*11^(n-1); a[Range[0,40]] (* _Vladimir Joseph Stephan Orlovsky_, Feb 09 2011*)

%o (Magma) [n*11^(n-1): n in [0..30]]; // _Vincenzo Librandi_, Jun 06 2011

%o (SageMath) [11^(n-1)*n for n in range(31)] # _G. C. Greubel_, Jan 16 2024

%Y Cf. A003415, A038315, A053541, A081128.

%K easy,nonn

%O 0,3

%A _Paul Barry_, Mar 07 2003