login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Fibonacci(4n)-3, or Fibonacci(2n-2)*Lucas(2n+2).
0

%I #29 Jan 07 2024 15:47:46

%S 0,18,141,984,6762,46365,317808,2178306,14930349,102334152,701408730,

%T 4807526973,32951280096,225851433714,1548008755917,10610209857720,

%U 72723460248138,498454011879261,3416454622906704,23416728348467682

%N Fibonacci(4n)-3, or Fibonacci(2n-2)*Lucas(2n+2).

%D Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8,-8,1).

%F a(n) = 8a(n-1) - 8a(n-2) + a(n-3).

%F G.f.: 3*x^2*(-6+x) / ( (x-1)*(x^2-7*x+1) ). a(n) = A033888(n)-3. - _R. J. Mathar_, Sep 03 2010

%p with(combinat): for n from 1 to 40 do printf(`%d,`,fibonacci(4*n)-3) od: # _James A. Sellers_, Mar 05 2003

%t Fibonacci[4Range[25]]-3 (* or *)

%t LinearRecurrence[{8,-8,1},{0,18,141},25] (* _Paolo Xausa_, Jan 07 2024 *)

%o (Magma) [Fibonacci(4*n)-3: n in [1..50]]; // _Vincenzo Librandi_, Apr 20 2011

%Y Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers).

%K nonn,easy

%O 1,2

%A _R. K. Guy_, Mar 04 2003

%E More terms from _James A. Sellers_, Mar 05 2003