login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Difference of Stirling numbers of the first kind.
4

%I #17 Jan 22 2017 21:54:16

%S 1,0,-1,-5,-26,-154,-1044,-8028,-69264,-663696,-6999840,-80627040,

%T -1007441280,-13575738240,-196287356160,-3031488633600,

%U -49811492505600,-867718162483200,-15974614352793600,-309920046408806400,-6320046028584960000

%N Difference of Stirling numbers of the first kind.

%H G. C. Greubel, <a href="/A081047/b081047.txt">Table of n, a(n) for n = 0..400</a>

%H Thierry Dana-Picard and David G. Zeitoun, <a href="http://dx.doi.org/10.1080/0020739X.2011.582172">Sequences of definite integrals, infinite series and Stirling numbers</a>, International Journal of Mathematical Education in Science and Technology, Volume 43, 2012 - Issue 2.

%F E.g.f.: (1+log(1-x))/(1-x). - _Paul Barry_, Nov 26 2008

%F a(n) = abs(s(n+1, 1))-abs(s(n+1, 2)), where s(n, m) is a (signed) Stirling number of the first kind (A008275). (corrected by _Wolfdieter Lang_, Jun 20 2011)

%F a(n) = A094645(n+2,2), n>=0. - _Wolfdieter Lang, Jun 20 2011

%t With[{nn = 100}, CoefficientList[Series[(1 + Log[1 - x])/(1 - x), {x, 0, nn}], x] Range[0, nn]!] (* _G. C. Greubel_, Jan 21 2017 *)

%Y Cf. A001705, A008275, A081046.

%K easy,sign

%O 0,4

%A _Paul Barry_, Mar 05 2003