Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jul 24 2016 21:22:40
%S 1,17,225,2673,29889,321489,3365793,34543665,349156737,3486784401,
%T 34480423521,338218086897,3295011258945,31914537622353,
%U 307565765227809,2951106226689969,28207085096966913,268687927383516945
%N 9th binomial transform of (1,8,0,0,0,0,0,0,.....).
%C Also number of (n+1)-digit numbers with exactly one '9' in their decimal expansion. Nine can be replaced by any nonzero digit 1..9. - _Zak Seidov_, Jul 11 2016
%H Vincenzo Librandi, <a href="/A081044/b081044.txt">Table of n, a(n) for n = 0..200</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (18,-81).
%F a(n) = 18*a(n-1)-81*a(n-2), a(0)=0, a(1)=17.
%F a(n) = (8n+9)*9^(n-1).
%F a(n) = Sum_{k=0..n} (k+1)*8^k*binomial(n, k).
%F G.f.: (1-x)/(1-9x)^2.
%F E.g.f.: (1 + 8*x)*exp(9*x). - _Ilya Gutkovskiy_, Jul 18 2016
%t Table[(8n+9)9^(n-1),{n,0,30}] (*or*) LinearRecurrence[{18, -81}, {1, 17}, 40] (* _Vincenzo Librandi_, Feb 23 2012 *)
%o (PARI) a(n) = (8*n+9)*9^(n-1); \\ _Altug Alkan_, Jul 18 2016
%Y Cf. A081043, A081045.
%K base,easy,nonn
%O 0,2
%A _Paul Barry_, Mar 04 2003