login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

3rd binomial transform of (1,2,0,0,0,0,0,0,...).
23

%I #48 May 05 2023 12:18:40

%S 1,5,21,81,297,1053,3645,12393,41553,137781,452709,1476225,4782969,

%T 15411789,49424013,157837977,502211745,1592728677,5036466357,

%U 15884240049,49977243081,156905298045,491636600541,1537671920841

%N 3rd binomial transform of (1,2,0,0,0,0,0,0,...).

%C a(n) is the number of distinguished parts in all compositions of n+1 in which some (possibly all or none) of the parts have been distinguished. a(1) = 2 because we have: 2', 1'+1, 1+1', 1'+1' where we see 5's marking the distinguished parts. With offset=1, a(n) = Sum_{k=1..n} A200139(n,k)*k. - _Geoffrey Critzer_, Jan 12 2013

%C For n>=1, a(n-1) the number of ternary strings of length 2n containing the block 11..12 with n ones where no runs of length larger than n are permitted. - _Marko Riedel_, Mar 08 2016

%C Binomial transform of {A001787(n + 1)}_{n >= 0}. - _Wolfdieter Lang_, Oct 01 2019

%H Vincenzo Librandi, <a href="/A081038/b081038.txt">Table of n, a(n) for n = 0..400</a>

%H Jia Huang, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Huang/huang8.html">Partially Palindromic Compositions</a>, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See p. 13.

%H Silvana Ramaj, <a href="https://digitalcommons.georgiasouthern.edu/etd/2273">New Results on Cyclic Compositions and Multicompositions</a>, Master's Thesis, Georgia Southern Univ., 2021. See p. 67.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-9).

%F G.f.: (1-x)/(1-3*x)^2.

%F a(n) = 6*a(n-1) - 9*a(n-2), with a(0)=1, a(1)=5.

%F a(n) = (2*n+3)*3^(n-1).

%F a(n) = Sum_{k=0..n} (k+1)*2^k*binomial(n, k).

%F a(n) = 2*A086972(n) - 1. - Lambert Herrgesell (zero815(AT)googlemail.com), Feb 10 2008

%F From _Amiram Eldar_, May 17 2022: (Start)

%F Sum_{n>=0} 1/a(n) = 9*(sqrt(3)*arctanh(1/sqrt(3)) - 1).

%F Sum_{n>=0} (-1)^n/a(n) = 9 - 3*sqrt(3)*Pi/2. (End)

%p A081038:=n->(2*n+3)*3^(n-1): seq(A081038(n), n=0..30); # _Wesley Ivan Hurt_, Mar 07 2016

%t LinearRecurrence[{6,-9},{1,5},40] (* _Harvey P. Dale_, Jun 22 2012 *)

%o (Magma) [(2*n+3)*3^(n-1): n in [0..30]]; // _Vincenzo Librandi_, Jun 09 2011

%Y Cf. A001787, A001792, A081039, A081040, A086972.

%Y First differences of A027471.

%Y Cf. A269914, A269915, A269916, A269917.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Mar 03 2003