%I #15 Nov 18 2017 18:46:12
%S 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3775,24915,0,0,113250,604000,0,
%T 0,30256625,133993625,0,0,8292705580,31097645925,0,0,1302257122605,
%U 4196161839505,0,0,113402818847850,317527892773980,0
%N Weight distribution of [151,76,19] binary quadratic-residue (or QR) code.
%C Taken from the Tjhai-Tomlinson web site.
%C According to Boston and Hao, the Tjhai-Tomlinson web site gives several erroneous values, but their book with Ambroze, Ahmed, and Jibril gives correct values. - _Eric M. Schmidt_, Nov 17 2017
%H Nigel Boston and Jing Hao, <a href="https://arxiv.org/abs/1705.06413">The Weight Distribution of Quasi-quadratic Residue Codes</a>, arXiv:1705.06413 [cs.IT], 2017.
%H C. J. Tjhai and Martin Tomlinson, <a href="http://www.tech.plym.ac.uk/Research/fixed_and_mobile_communications/links/weightdistributions.htm"> Weight Distributions of Quadratic Residue and Quadratic Double Circulant Codes over GF(2)</a> [dead link]
%H M. Tomlinson, C. J. Tjhai, M. A. Ambroze, M. Ahmed, M. Jibril, <a href="https://dx.doi.org/10.1007/978-3-319-51103-0">Error-Correction Coding and Decoding</a>, Springer, 2017, p. 285.
%e The weight distribution is:
%e i A_i
%e 0 1
%e 19 3775
%e 20 24915
%e 23 113250
%e 24 604000
%e 27 30256625
%e 28 133993625
%e 31 8292705580
%e 32 31097645925
%e 35 1302257122605
%e 36 4196161839505
%e 39 113402818847850
%e 40 317527892773980
%e 43 5706949034630250
%e 44 14007965812274250
%e 47 171469716029462700
%e 48 371517718063835850
%e 51 3155019195317144883
%e 52 6067344606379124775
%e 55 36274321608490644595
%e 56 62184551328841105020
%e 59 264765917968736096775
%e 60 405974407552062015055
%e 63 1241968201959417159800
%e 64 1707706277694198594725
%e 67 3778485133479463579225
%e 68 4667540459004043244925
%e 71 7503425412744902320620
%e 72 8337139347494335911800
%e 75 9763682329503348632684
%e 76 9763682329503348632684
%e 79 8337139347494335911800
%e 80 7503425412744902320620
%e 83 4667540459004043244925
%e 84 3778485133479463579225
%e 87 1707706277694198594725
%e 88 1241968201959417159800
%e 91 405974407552062015055
%e 92 264765917968736096775
%e 95 62184551328841105020
%e 96 36274321608490644595
%e 99 6067344606379124775
%e 100 3155019195317144883
%e 103 371517718063835850
%e 104 171469716029462700
%e 107 14007965812274250
%e 108 5706949034630250
%e 111 317527892773980
%e 112 113402818847850
%e 115 4196161839505
%e 116 1302257122605
%e 119 31097645925
%e 120 8292705580
%e 123 133993625
%e 124 30256625
%e 127 604000
%e 128 113250
%e 131 24915
%e 132 3775
%e 151 1
%K nonn,fini
%O 0,20
%A _N. J. A. Sloane_, Apr 15 2009
%E Corrected (using the Tomlinson et al. book) by _Eric M. Schmidt_, Nov 17 2017