Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #149 Aug 06 2024 16:53:48
%S 1,1,2,5,14,42,131,417,1341,4334,14041,45542,147798,479779,1557649,
%T 5057369,16420730,53317085,173118414,562110290,1825158051,5926246929,
%U 19242396629,62479659622,202870165265,658715265222,2138834994142,6944753544643,22549473023585
%N Number of Catalan paths (nonnegative, starting and ending at 0, step +/-1) of 2*n steps with all values <= 5.
%C With interpolated zeros (1,0,1,0,2,...), counts closed walks of length n at start or end node of P_6. The sequence (0,1,0,2,...) counts walks of length n between the start and second node. - _Paul Barry_, Jan 26 2005
%C HANKEL transform of sequence and the sequence omitting a(0) is the sequence A130716. This is the unique sequence with that property. - _Michael Somos_, May 04 2012
%C From _Wolfdieter Lang_, Mar 30 2020: (Start)
%C a(n) is also the upper left entry of the n-th power of the 3 X 3 tridiagonal matrix M_3 = Matrix([1,1,0], [1,2,1], [0,1,2]) from A332602: a(n) = ((M_3)^n)[1,1].
%C Proof: (M_3)^n = b(n-2)*(M_3)^2 - (6*b(n-3) - b(n-4))*M_3 + b(n-3)*1_3, for n >= 0, with b(n) = A005021(n), for n >= -4. For the proof of this see a comment in A005021. Hence (M_3)^n[1,1] = 2*b(n-2) - 5*b(n-3) + b(n-4), for n >= 0. This proves the 3 X 3 part of the conjecture in A332602 by _Gary W. Adamson_.
%C The formula for a(n) given below in terms of r = rho(7) = A160389 proves that a(n)/a(n-1) converges to rho(7)^2 = A116425 = 3.2469796..., because r - 2/r = 0.6920... < 1, and r^2 - 3 = 0.2469... < 1. This limit was conjectured in A332602 by _Gary W. Adamson_.
%C (End)
%H Alois P. Heinz, <a href="/A080937/b080937.txt">Table of n, a(n) for n = 0..600</a>
%H Jean-Luc Baril, Toufik Mansour, José L. Ramírez, and Mark Shattuck, <a href="http://jl.baril.u-bourgogne.fr/bmrs.pdf">Catalan words avoiding a pattern of length four</a>, Univ. de Bourgogne (France, 2024). See p. 3.
%H Jean-Luc Baril and Helmut Prodinger, <a href="https://arxiv.org/abs/2205.01383">Enumeration of partial Lukasiewicz paths</a>, arXiv:2205.01383 [math.CO], 2022.
%H Paul Barry, <a href="https://arxiv.org/abs/2104.01644">Centered polygon numbers, heptagons and nonagons, and the Robbins numbers</a>, arXiv:2104.01644 [math.CO], 2021.
%H Giulio Cerbai, Anders Claesson, and Luca Ferrari, <a href="https://arxiv.org/abs/1907.08142">Stack sorting with restricted stacks</a>, arXiv:1907.08142 [cs.DS], 2019.
%H Wei Chen, <a href="http://summit.sfu.ca/item/14626">Enumeration of Set Partitions Refined by Crossing and Nesting Numbers</a>, MS Thesis, Department of Mathematics. Simon Fraser University, Fall 2014. Table 4.1, line k=2.
%H Johann Cigler, <a href="https://mathoverflow.net/questions/372642/number-of-bounded-dyck-paths-with-negative-length">Number of bounded Dyck paths with "negative length"</a>, MathOverflow question, Sep 26 2020.
%H Michael Dairyko, Lara Pudwell, Samantha Tyner, and Casey Wynn, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i3p22">Non-contiguous pattern avoidance in binary trees</a>, Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227.
%H Nachum Dershowitz, <a href="https://arxiv.org/abs/2006.06516">Between Broadway and the Hudson: A Bijection of Corridor Paths</a>, arXiv:2006.06516 [math.CO], 2020.
%H Paul Duncan and Einar Steingrimsson, <a href="http://arxiv.org/abs/1109.3641">Pattern avoidance in ascent sequences</a>, arXiv preprint arXiv:1109.3641 [math.CO], 2011.
%H Sergi Elizalde, <a href="https://arxiv.org/abs/2008.05669">Symmetric peaks and symmetric valleys in Dyck paths</a>, arXiv:2008.05669 [math.CO], 2020.
%H Stefan Felsner and Daniel Heldt, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Felsner/felsner2.html">Lattice Path Enumeration and Toeplitz Matrices</a>, J. Int. Seq. 18 (2015) # 15.1.3.
%H Daniel Heldt, <a href="http://dx.doi.org/10.14279/depositonce-5182">On the mixing time of the face flip-and up/down Markov chain for some families of graphs</a>, Dissertation, Mathematik und Naturwissenschaften der Technischen Universitat Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften, 2016.
%H Matthew Hyatt and Jeffrey Remmel, <a href="http://arxiv.org/abs/1208.1052">The classification of 231-avoiding permutations by descents and maximum drop</a>, arXiv preprint arXiv:1208.1052 [math.CO], 2012. - From _N. J. A. Sloane_, Dec 24 2012
%H Aleksandar Ilic and Andreja Ilic, <a href="http://dx.doi.org/10.2298/FIL1103191I">On the number of restricted Dyck paths</a>, Filomat 25:3 (2011), 191-201; DOI: 10.2298/FIL1103191I.
%H Sergey Kitaev, Jeffrey Remmel and Mark Tiefenbruck, <a href="http://arxiv.org/abs/1201.6243">Marked mesh patterns in 132-avoiding permutations I,</a> arXiv:1201.6243v1 [math.CO], 2012 (Corollary 3, case k=5, pages 10-11). - From _N. J. A. Sloane_, May 09 2012
%H Erkko Lehtonen and Tamás Waldhauser, <a href="https://arxiv.org/abs/2011.07621">Associative spectra of graph algebras I. Foundations, undirected graphs, antiassociative graphs</a>, arXiv:2011.07621 [math.CO], 2020. See also <a href="https://doi.org/10.1007/s10801-020-01010-w">J. of Algebraic Combinatorics</a> (2021) Vol. 53, 613-638.
%H Toufik Mansour and Mark Shattuck, <a href="http://arxiv.org/abs/1207.3755">Some enumerative results related to ascent sequences</a>, arXiv preprint arXiv:1207.3755 [math.CO], 2012. - From _N. J. A. Sloane_, Dec 22 2012
%H Sophie Morier-Genoud, Valentin Ovsienko, and Serge Tabachnikov, <a href="http://arxiv.org/abs/1008.3359">2-frieze patterns and the cluster structure of the space of polygons</a>, arXiv:1008.3359 [math.AG], 2010-2011. - From _N. J. A. Sloane_, Dec 26 2012
%H Sophie Morier-Genoud, Valentin Ovsienko, and Serge Tabachnikov, <a href="http://dx.doi.org/10.5802/aif.2713">2-frieze patterns and the cluster structure of the space of polygons</a>, Annales de l'institut Fourier, 62 no. 3 (2012), 937-987. - From _N. J. A. Sloane_, Dec 26 2012
%H David Nečas and Ivan Ohlídal, <a href="http://dx.doi.org/10.1364/OE.22.004499">Consolidated series for efficient calculation of the reflection and transmission in rough multilayers</a>, Optics Express, Vol. 22, 2014, No. 4; DOI:10.1364/OE.22.004499.
%H László Németh and László Szalay, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL24/Nemeth/nemeth8.html">Sequences Involving Square Zig-Zag Shapes</a>, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
%H Lara Pudwell, <a href="http://faculty.valpo.edu/lpudwell/slides/notredame.pdf">Pattern avoidance in trees</a>, slides from a talk, mentions many sequences, 2012. - From _N. J. A. Sloane_, Jan 03 2013
%H Lara Pudwell and Andrew Baxter, <a href="http://faculty.valpo.edu/lpudwell/slides/pp2014_pudwell.pdf">Ascent sequences avoiding pairs of patterns</a>, 2014.
%H Santiago Rojas-Rojas, Camila Muñoz, Edgar Barriga, Pablo Solano, Aldo Delgado, and Carla Hermann-Avigliano, <a href="https://arxiv.org/abs/2310.12366">Analytic Evolution for Complex Coupled Tight-Binding Models: Applications to Quantum Light Manipulation</a>, arXiv:2310.12366 [quant-ph], 2023. See p. 12.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-6,1).
%F a(n) = A080934(n,5).
%F G.f.: (1-4*x+3*x^2)/(1-5*x+6*x^2-x^3). - _Ralf Stephan_, May 13 2003
%F a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3). - _Herbert Kociemba_, Jun 11 2004
%F a(n) = A096976(2*n). - _Floor van Lamoen_, Nov 02 2005
%F a(n) = (4/7-4/7*cos(1/7*Pi)^2)*(4*(cos(Pi/7))^2)^n + (1/7-2/7*cos(1/7*Pi) + 4/7*cos(1/7*Pi)^2)*(4*(cos(2*Pi/7))^2)^n + (2/7+2/7*cos(1/7*Pi))*(4*(cos(3*Pi/7))^2)^n for n>=0. - _Richard Choulet_, Apr 19 2010
%F G.f.: 1 / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x))))). - _Michael Somos_, May 04 2012
%F a(-n) = A038213(n). a(n + 2) * a(n) - a(n + 1)^2 = a(1 - n). Convolution inverse is A123183 with A123183(0)=1. - _Michael Somos_, May 04 2012
%F From _Wolfdieter Lang_, Mar 30 2020: (Start)
%F In terms of the algebraic number r = rho(7) = A160389 of degree 3 the formula given by _Richard Choulet_ becomes a(n) = (1/7)*(r)^(2*n)*(C1(r) + C2(r)*(r - 2/r)^(2*n) + C3(r)*(r^2 - 3)^(2*n)), with C1(r) = 4 - r^2, C2(r) = 1 - r + r^2, and C3 = 2 + r.
%F a(n) = ((M_3)^n)[1,1] = 2*b(n-2) - 5*b(n-3) + b(n-4), for n >= 0, with the 3 X 3 tridiagonal matrix M_3 = Matrix([1,1,0], [1,2,1], [0,1,2]) from A332602, and b(n) = A005021(n) (with offset n >= -4). (End)
%e G.f. = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 131*x^6 + 417*x^7 + 1341*x^8 + ...
%p a:= n-> (<<0|1|0>, <0|0|1>, <1|-6|5>>^n. <<1, 1, 2>>)[1, 1]:
%p seq(a(n), n=0..35); # _Alois P. Heinz_, Nov 09 2012
%t nn=56;Select[CoefficientList[Series[(1-4x^2+3x^4)/(1-5x^2+6x^4-x^6), {x,0,nn}], x],#>0 &] (* _Geoffrey Critzer_, Jan 26 2014 *)
%t LinearRecurrence[{5,-6,1},{1,1,2},30] (* _Jean-François Alcover_, Jan 09 2016 *)
%o (PARI) a=vector(99); a[1]=1; a[2]=2;a[3]=5; for(n=4,#a,a[n]=5*a[n-1]-6*a[n-2] +a[n-3]); a \\ _Charles R Greathouse IV_, Jun 10 2011
%o (PARI) {a(n) = if( n<0, n = -n; polcoeff( (1 - 3*x + x^2) / (1 - 6*x + 5*x^2 - x^3) + x * O(x^n), n), polcoeff( (1 - 4*x + 3*x^2) / (1 - 5*x + 6*x^2 - x^3) + x * O(x^n), n))} /* _Michael Somos_, May 04 2012 */
%o (Magma) I:=[1,1,2]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..30]]; // _Vincenzo Librandi_, Jan 09 2016
%Y Cf. A000007, A000012, A001519, A007051, A011782, A024175, A080937, A080938.
%Y Cf. A033191 which essentially provide the same sequence for different limits and tend to A000108.
%Y Cf. A005021, A094790, A094789.
%Y Cf. A211216, A005021, A160389, A116425, A332602.
%K nonn,easy
%O 0,3
%A _Henry Bottomley_, Feb 25 2003