The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A080842 Numbers in the x/3 + 1 conjecture: Repeat until 1 is reached: if x is divisible by 3 then divide by 3, otherwise add 1. 0
 1, 3, 1, 1, 5, 6, 2, 3, 1, 6, 2, 3, 1, 2, 3, 1, 8, 9, 3, 1, 9, 3, 1, 3, 1, 11, 12, 4, 5, 6, 2, 3, 1, 12, 4, 5, 6, 2, 3, 1, 4, 5, 6, 2, 3, 1, 14, 15, 5, 6, 2, 3, 1, 15, 5, 6, 2, 3, 1, 5, 6, 2, 3, 1, 17, 18, 6, 2, 3, 1, 18, 6, 2, 3, 1, 6, 2, 3, 1, 20, 21, 7, 8, 9, 3, 1, 21, 7, 8, 9, 3, 1, 7, 8, 9, 3, 1, 23, 24 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS These numbers converge to various last-3-digit endings and only two last-2-digit numbers: 2,1 or 3,1. LINKS Table of n, a(n) for n=1..99. EXAMPLE The trajectories starting at x=2, 3, 4 etc. are (3,1), (1), (5,6,2,3,1), (6,2,3,1), (2,3,1), (8,9,3,1) etc. Each "1" marks the end of a trajectory. MATHEMATICA Join[{1}, Flatten[Table[Rest[NestWhileList[If[Divisible[#, 3], #/3, #+1]&, n, #!=1&]], {n, 2, 30}]]] (* Harvey P. Dale, Feb 02 2012 *) PROG (PARI) mult3p1(n, p) = { print1(1" "); for(j=1, n, x=j; while(x>1, if(x%3==0, x/=3, x = x*p+1 ) ; print1(x" ") ; ); ) ; print1(" ") ; } { mult3p1(30, 1) ; } - R. J. Mathar, Feb 01 2008 CROSSREFS Cf. A080828, A067433. Sequence in context: A294582 A294589 A204027 * A216948 A183944 A145661 Adjacent sequences: A080839 A080840 A080841 * A080843 A080844 A080845 KEYWORD easy,nonn,tabf AUTHOR Cino Hilliard, Mar 28 2003 EXTENSIONS Edited and corrected by R. J. Mathar, Feb 01 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 05:14 EDT 2023. Contains 365674 sequences. (Running on oeis4.)