login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: exp( x/( 1 - x - x^2 - x^3 ) ).
1

%I #9 Oct 05 2013 06:15:22

%S 1,1,3,19,169,1761,22171,325123,5416209,101177569,2093489011,

%T 47501861331,1172566502713,31276078199809,896253254128779,

%U 27456289993445251,895308888305467681,30958452403586027073

%N E.g.f.: exp( x/( 1 - x - x^2 - x^3 ) ).

%H Vincenzo Librandi, <a href="/A080835/b080835.txt">Table of n, a(n) for n = 0..200</a>

%F E.g.f.: exp( x/( 1 - x - x^2 - x^3 ) ).

%F a(n) = (2*n-1)*a(n-1) + (n-2)*(n-1)*a(n-2) + (n-2)*(n-1)*a(n-3) - (n-3)*(n-2)*(n-1)*(3*n-14)*a(n-4) - 2*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-5) - (n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-6). - _Vaclav Kotesovec_, Oct 02 2013

%F a(n) ~ 11^(3/4) * exp((5*r - 3 + 4*sqrt(22*(3+r)*(1+2*r)*n))/44 - n) * n^(n-1/4) * ((3+r)*(1+2*r))^(1/4) / (r^n * 2^(1/4) * sqrt((-3+(9-4*r)*r)*(4+r*(3+2*r))*(14+r*(7+2*r))*(1+r*(2+3*r)))), where r = ((17+3*sqrt(33))^(1/3) - 2/(17+3*sqrt(33))^(1/3) - 1)/3 = 0.543689012692... is the root of the equation -1 + r + r^2 + r^3 = 0. - _Vaclav Kotesovec_, Oct 02 2013

%t CoefficientList[Series[E^(x/(1-x-x^2-x^3)), {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Oct 02 2013 *)

%K easy,nonn

%O 0,3

%A _Emanuele Munarini_, Mar 28 2003

%E Corrected name, _Joerg Arndt_, Oct 02 2013