login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the infinite product of zeta functions for odd arguments >= 3.
3

%I #24 May 18 2024 14:52:30

%S 1,2,6,0,2,0,5,7,1,0,7,0,5,2,4,1,7,1,0,7,6,7,8,1,7,2,2,6,0,0,2,4,1,0,

%T 6,2,8,0,3,4,3,7,9,8,6,4,0,8,4,9,4,9,6,4,0,3,7,7,1,5,3,0,1,3,9,3,0,6,

%U 3,2,4,8,8,4,2,9,8,0,4,3,1,5,6,6,8,6,5,0,0,9,6,4,1,1,6,3,4,7,3,4,4,8,5,8,8

%N Decimal expansion of the infinite product of zeta functions for odd arguments >= 3.

%H Bernd C. Kellner, <a href="https://doi.org/10.1515/INTEG.2009.009">On asymptotic constants related to products of Bernoulli numbers and factorials</a>, Integers, Vol. 9 (2009), Article #A08, pp. 83-106; <a href="https://www.emis.de/journals/INTEGERS/papers/j8/j8.Abstract.html">alternative link</a>; arXiv:<a href="https://arxiv.org/abs/math/0604505">0604505</a> [math.NT], 2006.

%F Decimal expansion of zeta(3)*zeta(5)*zeta(7)*...*zeta(2k+1)*...

%F Equals A021002/A080729. - _Amiram Eldar_, Jan 31 2024

%e 1.2602057107052417107678172260024106280343...

%t RealDigits[ Product[ Zeta[ 2n + 1], {n, 500}], 10, 110][[1]] (* _Robert G. Wilson v_, Nov 21 2014 *)

%o (PARI) prodinf(x=1, zeta(2*x+1)) \\ _Michel Marcus_, Nov 22 2014

%Y Cf. A021002, A080729.

%K cons,nonn

%O 1,2

%A Deepak R. N (deepak_rn(AT)safe-mail.net), Mar 08 2003

%E More terms from _Benoit Cloitre_, Mar 08 2003