login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080722
a(0) = 0; for n > 0, a(n) is taken to be the smallest positive integer greater than a(n-1) which is consistent with the condition "n is a term of the sequence if and only if a(n) == 1 (mod 3)".
0
0, 1, 3, 4, 7, 8, 9, 10, 13, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121
OFFSET
0,3
LINKS
B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, arXiv:math/0305308 [math.NT], 2003.
Hsien-Kuei Hwang, Svante Janson, Tsung-Hsi Tsai, Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms 13:4 (2017), #47.
FORMULA
a(a(n)) = 3*n-2, n >= 2.
PROG
(PARI) {a=0; m=[]; for(n=1, 70, print1(a, ", "); a=a+1; if(a%3==1&&a==n, qwqw=qwqw, if(m==[], while(a%3!=1&&a==n, a++), if(m[1]==n, while(a%3!=1, a++); m=if(length(m)==1, [], vecextract(m, "2..")), if(a%3==1, a++))); m=concat(m, a)))} \\ Klaus Brockhaus, Mar 08 2003
CROSSREFS
Sequence in context: A057811 A284489 A026343 * A092754 A061094 A100991
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 08 2003
EXTENSIONS
More terms from Klaus Brockhaus, Mar 08 2003
STATUS
approved