login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080683 23-smooth numbers: numbers whose prime divisors are all <= 23. 16

%I

%S 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

%T 27,28,30,32,33,34,35,36,38,39,40,42,44,45,46,48,49,50,51,52,54,55,56,

%U 57,60,63,64,65,66,68,69,70,72,75,76,77,78,80,81,84,85,88,90,91,92,95

%N 23-smooth numbers: numbers whose prime divisors are all <= 23.

%C Coincides for the first 111 terms with A174228 (divisors of 24!). - _Bruno Berselli_, Sep 24 2012

%H William A. Tedeschi, <a href="/A080683/b080683.txt">Table of n, a(n) for n = 1..10000</a>

%F Sum_{n>=1} 1/a(n) = Product_{primes p <= 23} p/(p-1) = (2*3*5*7*11*13*17*19*23)/(1*2*4*6*10*12*16*18*22) = 676039/110592. - _Amiram Eldar_, Sep 22 2020

%p select(t -> max(numtheory:-factorset(t)) <= 23, [$1..1000]); # _Robert Israel_, Jan 22 2016

%t mx = 100; Sort@ Flatten@ Table[ 2^a*3^b*5^c*7^d*11^e*13^f*17^g*19^h*23^i, {a, 0, Log[2, mx]}, {b, 0, Log[3, mx/2^a]}, {c, 0, Log[5, mx/(2^a*3^b)]}, {d, 0, Log[7, mx/(2^a*3^b*5^c)]}, {e, 0, Log[11, mx/(2^a*3^b*5^c*7^d)]}, {f, 0, Log[13, mx/(2^a*3^b*5^c*7^d*11^e)]}, {g, 0, Log[17, mx/(2^a*3^b*5^c*7^d*11^e*13^f)]}, {h, 0, Log[19, mx/(2^a*3^b*5^c*7^d*11^e*13^f*17^g)]}, {i, 0, Log[23, mx/(2^a*3^b*5^c*7^d*11^e*13^f*17^g*19^h)]}] (* _Robert G. Wilson v_, Jan 19 2016 *)

%o (PARI) test(n)=m=n; forprime(p=2,23, while(m%p==0,m=m/p)); return(m==1)

%o for(n=1,100,if(test(n),print1(n",")))

%o (PARI) list(lim,p=23)=if(p==2, return(powers(2, logint(lim\1,2)))); my(v=[],q=precprime(p-1),t=1); for(e=0,logint(lim\=1,p), v=concat(v, list(lim\t,q)*t); t*=p); Set(v) \\ _Charles R Greathouse IV_, Apr 16 2020

%o (MAGMA) [n: n in [1..100] | PrimeDivisors(n) subset PrimesUpTo(23)]; // _Bruno Berselli_, Sep 24 2012

%Y For p-smooth numbers with other values of p, see A003586, A051037, A002473, A051038, A080197, A080681, A080682.

%K easy,nonn

%O 1,2

%A _Cino Hilliard_, Mar 02 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 2 12:26 EST 2021. Contains 341750 sequences. (Running on oeis4.)