login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080681 17-smooth numbers: numbers whose prime divisors are all <= 17. 13

%I

%S 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,21,22,24,25,26,27,28,

%T 30,32,33,34,35,36,39,40,42,44,45,48,49,50,51,52,54,55,56,60,63,64,65,

%U 66,68,70,72,75,77,78,80,81,84,85,88,90,91,96,98,99,100,102,104,105

%N 17-smooth numbers: numbers whose prime divisors are all <= 17.

%H William A. Tedeschi, <a href="/A080681/b080681.txt">Table of n, a(n) for n = 1..10000</a>

%F Sum_{n>=1} 1/a(n) = Product_{primes p <= 17} p/(p-1) = (2*3*5*7*11*13*17)/(1*2*4*6*10*12*16) = 17017/3072. - _Amiram Eldar_, Sep 22 2020

%t mx = 120; Sort@ Flatten@ Table[ 2^i*3^j*5^k*7^l*11^m*13^n*17^o, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx/2^i]}, {k, 0, Log[5, mx/(2^i*3^j)]}, {l, 0, Log[7, mx/(2^i*3^j*5^k)]}, {m, 0, Log[11, mx/(2^i*3^j*5^k*7^l)]}, {n, 0, Log[13, mx/(2^i*3^j*5^k*7^l*11^m)]}, {o, 0, Log[17, mx/(2^i*3^j*5^k*7^l*11^m*13^n)]}] (* _Robert G. Wilson v_, Aug 17 2012 *)

%o (PARI) test(n)= {m=n; forprime(p=2,17, while(m%p==0,m=m/p)); return(m==1)}

%o for(n=1,200,if(test(n),print1(n",")))

%o (PARI) list(lim,p=17)=if(p==2, return(powers(2, logint(lim\1,2)))); my(v=[],q=precprime(p-1),t=1); for(e=0,logint(lim\=1,p), v=concat(v, list(lim\t,q)*t); t*=p); Set(v) \\ _Charles R Greathouse IV_, Apr 16 2020

%o (MAGMA) [n: n in [1..150] | PrimeDivisors(n) subset PrimesUpTo(17)]; // _Bruno Berselli_, Sep 24 2012

%Y For p-smooth numbers with other values of p, see A003586, A051037, A002473, A051038, A080197, A080682, A080683.

%K easy,nonn

%O 1,2

%A _Cino Hilliard_, Mar 02 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 00:57 EDT 2021. Contains 344980 sequences. (Running on oeis4.)