login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (5*4^n - 8)/6.
7

%I #37 Sep 08 2022 08:45:09

%S 2,12,52,212,852,3412,13652,54612,218452,873812,3495252,13981012,

%T 55924052,223696212,894784852,3579139412,14316557652,57266230612,

%U 229064922452,916259689812,3665038759252,14660155037012,58640620148052,234562480592212,938249922368852

%N a(n) = (5*4^n - 8)/6.

%C These numbers have a simple binary pattern: 10,1100,110100,11010100,1101010100, ... i.e., the n-th term has a binary expansion 1(10){n-1}0, that is, there are n-1 10's between the most significant 1 and the least significant 0.

%H Vincenzo Librandi, <a href="/A080675/b080675.txt">Table of n, a(n) for n = 1..170</a>

%H Andrei Asinowski, Cyril Banderier, Benjamin Hackl, <a href="https://www.semanticscholar.org/paper/On-extremal-cases-of-pop-stack-sorting-Asinowski/4b17b76c31559d6d8126b8f1126fdb357f3a5df0">On extremal cases of pop-stack sorting</a>, Permutation Patterns (Zürich, Switzerland, 2019).

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-4).

%F a(1)=2, a(2)=12, a(n)=5*a(n-1)-4*a(n-2). - _Harvey P. Dale_, Oct 16 2012

%t (5*4^Range[30]-8)/6 (* or *) LinearRecurrence[{5,-4},{2,12},30] (* _Harvey P. Dale_, Oct 16 2012 *)

%o (Magma) [(5*4^n-8)/6: n in [1..40] ]; // _Vincenzo Librandi_, Apr 28 2011

%o (PARI) a(n)=(5*4^n-8)/6 \\ _Charles R Greathouse IV_, Oct 07 2015

%Y a(n) = A072197(n-1) - 1 = A014486(|A106191(n)|). a(n) = A079946(A020988(n-2)) for n>=2. Cf. also A122229.

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_, Mar 02 2003

%E Further comments added by _Antti Karttunen_, Sep 14 2006