|
|
A080471
|
|
a(n) is the smallest Fibonacci number that is obtained by placing digits anywhere in n; a(n) = n if n is a Fibonacci number.
|
|
2
|
|
|
1, 2, 3, 34, 5, 610, 377, 8, 89, 610, 4181, 121393, 13, 144, 1597, 10946, 1597, 4181, 1597, 832040, 21, 514229, 233, 2584, 2584, 28657, 28657, 2584, 121393, 832040, 317811, 832040, 233, 34, 3524578, 46368, 377, 46368, 121393, 832040, 4181, 514229
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..10000
|
|
MAPLE
|
IsSubList:= proc(T, S)
local i;
if T = [] then return true fi;
if S = [] then return false fi;
i:= ListTools:-Search(T[1], S);
if i = 0 then false else procname(T[2..-1], S[i+1..-1]) fi
end proc:
f:= proc(n) local T, S, k, v;
T:= convert(n, base, 10);
for k from 1 do
v:= combinat:-fibonacci(k);
S:= convert(v, base, 10);
if IsSubList(T, S) then return v fi
od
end proc:
map(f, [$1..100]); # Robert Israel, Mar 10 2020
|
|
MATHEMATICA
|
a[n_] := Block[{p = RegularExpression[ StringJoin @@ Riffle[ ToString /@ IntegerDigits[ n], ".*"]], f, k=2}, While[! StringContainsQ[ ToString[f = Fibonacci[ k++]], p]]; f]; Array[a, 42] (* Giovanni Resta, Mar 10 2020 *)
|
|
PROG
|
(Python)
def dmo(n, t):
if t < n: return False
while n and t:
if n%10 == t%10:
n //= 10
t //= 10
return n == 0
def fibo(f=1, g=2):
while True: yield f; f, g = g, f+g
def a(n):
return next(f for f in fibo() if dmo(n, f))
print([a(n) for n in range(1, 77)]) # Michael S. Branicky, Jan 21 2023
|
|
CROSSREFS
|
Cf. A068164, A068165, A080470.
Sequence in context: A083785 A046487 A062922 * A023184 A114229 A032816
Adjacent sequences: A080468 A080469 A080470 * A080472 A080473 A080474
|
|
KEYWORD
|
base,nonn
|
|
AUTHOR
|
Amarnath Murthy, Mar 07 2003
|
|
EXTENSIONS
|
Corrected and extended by Ray Chandler, Oct 11 2003
|
|
STATUS
|
approved
|
|
|
|