login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Exchange rightmost two binary digits of n > 1; a(0)=0, a(1)=2.
13

%I #56 Jan 19 2023 02:15:32

%S 0,2,1,3,4,6,5,7,8,10,9,11,12,14,13,15,16,18,17,19,20,22,21,23,24,26,

%T 25,27,28,30,29,31,32,34,33,35,36,38,37,39,40,42,41,43,44,46,45,47,48,

%U 50,49,51,52,54,53,55,56,58,57,59,60,62,61,63,64,66,65,67,68,70,69,71,72

%N Exchange rightmost two binary digits of n > 1; a(0)=0, a(1)=2.

%C Self-inverse permutation of the natural numbers: a(a(n)) = n.

%C Lodumo_2 of A021913. - _Philippe Deléham_, Apr 26 2009

%C The lodumo_m transformation of a list L is the list L' such that L'(n) is the smallest nonnegative integer not occurring earlier in L' and equal to L(n) (mod m). - _M. F. Hasler_, Dec 06 2010

%C From _Franck Maminirina Ramaharo_, Jul 20 2018: (Start)

%C Let

%C A: 0, 3, 8, 11, 16, 19, 24, 27, 32, 35, 40, 43, 48, 51, 56, 59, ... A047470

%C B: 1, 6, 9, 14, 17, 22, 25, 30, 33, 38, 41, 46, 49, 54, 57, 62, ... A047452

%C C: 2, 5, 10, 13, 18, 21, 26, 29, 34, 37, 42, 45, 50, 53, 58, 61, ... A047617

%C D: 4, 7, 12, 15, 20, 23, 28, 31, 36, 39, 44, 47, 52, 55, 60, 63, ... A047535.

%C Then the sequence is obtained by repeatedly picking terms from A,B,C,D according to the circuit A-C-B-A-D-B-C-D. The sequence begins:

%C A | C | B | A | D | B | C | D || A | C | B | A | D | ...

%C --+---+---+---+---+---+---+---++---+---+---+---+---+----

%C 0 | 2 | 1 | 3 | 4 | 6 | 5 | 7 || 8 |10 | 9 |11 |12 | ...

%C (End)

%C The sequence is a permutation of the nonnegative integers partitioned into quadruples [4k, 4k+2, 4k+1, 4k+3] for k >= 0, i.e., the two interior terms of each quadruple are interchanged. - _Guenther Schrack_, Apr 22 2019

%H Vincenzo Librandi, <a href="/A080412/b080412.txt">Table of n, a(n) for n = 0..5000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1).

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%F a(n) = 4*floor(n/4) + a(n mod 4), for n > 3.

%F a(n) = a(n-1) + a(n-4) - a(n-5) for n > 4. - _Joerg Arndt_, Mar 11 2013

%F a(n) = lod_2(A021913(n)). - _Philippe Deléham_, Apr 26 2009

%F From _Wesley Ivan Hurt_, May 28 2016: (Start)

%F a(n) = n + 1 + (1+i)*(2*i-2-(1-i)*i^(2*n) + i^(-n)-i^(1+n))/4 where i=sqrt(-1).

%F G.f.: x*(2-x+2*x^2+x^3) / ((1-x)^2*(1+x+x^2+x^3)). (End)

%F E.g.f.: (sin(x) + cos(x) + (2*x + 1)*sinh(x) + (2*x - 1)*cosh(x))/2. - _Ilya Gutkovskiy_, May 28 2016

%F From _Guenther Schrack_, Apr 23 2019: (Start)

%F a(n) = (2*n - (-1)^n + (-1)^(n*(n-1)/2))/2.

%F a(n) = a(n-4) + 4, a(0)=0, a(1)=2, a(2)=1, a(3)=3, for n > 3. (End)

%e a(20) = a('101'00') = '101'00' = 20; a(21) = a('101'01') = '101'10' = 22.

%e a(2) = a('10') = '01' = 1; a(3) = a('11') = '11' = 3.

%p A080412:=n->n+1+(1+I)*(2*I-2-(1-I)*I^(2*n)+I^(-n)-I^(1+n))/4: seq(A080412(n), n=0..100); # _Wesley Ivan Hurt_, May 28 2016

%t a[n_] := (bits = IntegerDigits[n, 2]; Join[Drop[bits, -2], {bits[[-1]], bits[[-2]]}] // FromDigits[#, 2]&); a[0]=0; a[1]=2; Table[a[n], {n, 0, 80}] (* _Jean-François Alcover_, Mar 11 2013 *)

%t ertbd[n_]:=Module[{a,b},{a,b}=TakeDrop[IntegerDigits[n,2], IntegerLength[ n,2]-2];FromDigits[Join[a,Reverse[b]],2]]; Join[{0,2},Array[ertbd,80,2]] (* The program uses the TakeDrop function from Mathematica version 10 *) (* _Harvey P. Dale_, Jan 07 2016 *)

%t CoefficientList[Series[x*(2-x+2*x^2+x^3)/((1-x)*(1-x^4)), {x,0,80}], x] (* _G. C. Greubel_, Apr 28 2019 *)

%o (GAP) a:=[0,2,1,3,4];; for n in [6..80] do a[n]:=a[n-1]+a[n-4]-a[n-5]; od; a; # _Muniru A Asiru_, Jul 27 2018

%o (PARI) my(x='x+O('x^80)); concat([0], Vec(x*(2-x+2*x^2+x^3)/((1-x)*(1-x^4)))) \\ _G. C. Greubel_, Apr 28 2019

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 80); [0] cat Coefficients(R!( x*(2-x+2*x^2+x^3)/((1-x)*(1-x^4)) )); // _G. C. Greubel_, Apr 28 2019

%o (Sage) (x*(2-x+2*x^2+x^3)/((1-x)*(1-x^4))).series(x, 80).coefficients(x, sparse=False) # _G. C. Greubel_, Apr 28 2019

%o (Python)

%o def A080412(n): return (0,1,-1,0)[n&3]+n # _Chai Wah Wu_, Jan 18 2023

%Y Cf. A004442, A007088, A021913, A080413, A080414.

%Y Cf. A047470, A047452, A047617, A047535.

%K nonn,easy,nice

%O 0,2

%A _Reinhard Zumkeller_, Feb 17 2003

%E Typo in example fixed by _Reinhard Zumkeller_, Jul 06 2009