login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Largest squarefree number dividing sum of divisors of n.
9

%I #18 Feb 20 2022 08:32:39

%S 1,3,2,7,6,6,2,15,13,6,6,14,14,6,6,31,6,39,10,42,2,6,6,30,31,42,10,14,

%T 30,6,2,21,6,6,6,91,38,30,14,30,42,6,22,42,78,6,6,62,57,93,6,14,6,30,

%U 6,30,10,30,30,42,62,6,26,127,42,6,34,42,6,6,6,195,74,114,62,70,6,42,10

%N Largest squarefree number dividing sum of divisors of n.

%C Not multiplicative, but satisfies a similar condition: For all coprime x, y (with gcd(x,y)=1), a(x*y) = LCM(a(x), a(y)), where LCM is the least common multiply of its arguments, A003990. Compare also with A351560. - _Antti Karttunen_, Feb 20 2022

%H Antti Karttunen, <a href="/A080398/b080398.txt">Table of n, a(n) for n = 1..16384</a>

%H <a href="/index/Lc#lcm">Index entries for sequences related to lcm's</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(n) = A007947(A000203(n)).

%F a(n) = A019565(A351560(n)). - _Antti Karttunen_, Feb 20 2022

%e n=12:sigma[12]=1+2+3+4+6+12=28, sqf-kernel=14=a(12)

%t ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] cor[x_] := Apply[Times, ba[x]] Table[cor[DivisorSigma[1, w]], {w, 1, 100}]

%o (PARI) a(n) = factorback(factor(sigma(n))[,1]); \\ _Michel Marcus_, Nov 18 2017

%Y Cf. A000203, A007947, A019565, A351560.

%K nonn

%O 1,2

%A _Labos Elemer_, Mar 19 2003