login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080379
Least n such that n consecutive values in A080378 equals 2; i.e., exactly n differences between consecutive primes give residues 2 when divided by 4.
1
5, 2, 9, 15, 39, 32, 305, 51, 2631, 3685, 170, 1156, 8775, 98, 5295, 41914, 106469, 167115, 186917, 1098776, 187784, 976193, 1166047, 423098, 77442332, 2643158, 11004239, 36330320, 259652255, 307899596, 2573725031, 411764049, 4080634008, 14841740642, 6022532018, 17035372732, 35045523209
OFFSET
1,1
COMMENTS
a(43) = 147618899630. - Donovan Johnson
FORMULA
a(n)=Min{x; Union[{Mod[A001223(x), 4], ..., Mod[A001223(x+n-1), 4]}]=2}
EXAMPLE
n=4: a(4)=15,differences between {47,53,59,61,67} are {6,6,2,6} corresponds to exactly four differences congruent to 2 mod 4,since before and after 47-43=4 or 71-67=4 are congruent to 0 mod 4.
MATHEMATICA
dp[x_] := Mod[Prime[x+1]-Prime[x], 4] pat[x_, h_] := Table[dp[x+j], {j, 0, h-1}] up[x_, h_] := Union[pat[x, h]] Table[fa=1; k=0; Do[s=up[n, h]; s1=Length[s]; s2=Part[u=pat[n+1, h], Length[u]]; s3=Part[w=pat[n-1, h], 1]; If[Equal[s1, 1]&&Equal[fa, 1]&&Equal[s2, 0]&&Equal[s3, 0], k=k+1; Print[{k, h, n, Prime[n], s, s1}]; fa=0], {n, 2, 200000}], {h, 1, 19}]
With[{c=Mod[Differences[Prime[Range[12*10^5]]], 4]}, Join[{5, 2}, Drop[ Flatten[ Table[ SequencePosition[ c, Join[ {0}, PadRight[ {}, n, 2], {0}], 1][[All, 1]], {n, 0, 25}]]+1, 3]]] (* The program generates the first 24 terms of the sequence. *) (* Harvey P. Dale, Dec 01 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Mar 04 2003
EXTENSIONS
a(20)-a(37) from Donovan Johnson, Nov 16 2010
STATUS
approved