The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A080360 a(n) is the largest positive integer x such that the number of unitary-prime-divisors of x! equals n. Same as the largest positive integer x such that the number of primes in (x/2,x] equals n. 6
 10, 16, 28, 40, 46, 58, 66, 70, 96, 100, 106, 126, 148, 150, 166, 178, 180, 226, 228, 232, 238, 240, 262, 268, 280, 306, 310, 346, 348, 366, 372, 400, 408, 418, 430, 432, 438, 460, 486, 490, 502, 568, 570, 586, 592, 598, 600, 606, 640, 642, 646, 652, 658, 676 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES S. Ramanujan, Collected Papers of Srinivasa Ramanujan (Ed. G. H. Hardy, S. Aiyar, P. Venkatesvara and B. M. Wilson), Amer. Math. Soc., Providence, 2000, pp. 208-209. LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc., 11 (1919), 181-182. V. Shevelev, Ramanujan and Labos primes, their generalizations and classifications of primes, arXiv:0909.0715 [math.NT], 2009-2011. J. Sondow, Ramanujan Prime in MathWorld J. Sondow and E. W. Weisstein, Bertrand's Postulate in MathWorld J. Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly, 116 (2009), 630-635; arXiv:0907.5232 [math.NT], 2009-2010. Wikipedia, Ramanujan prime FORMULA a(n) = Max{x; Pi[x]-Pi[x/2]=n} = Max{x; A056171(x)=n} = Max{x; A056169(n!)=n}; where Pi()=A000720(). a(n) = A104272(n+1) - 1. [Jonathan Sondow, Aug 11 2008] EXAMPLE n=5: in 46! five unitary-prime-divisors[UPD] appear: {29,31,37,41,43}. In larger factorials number of UPD is not more equal 5. Thus a(5)=46. MATHEMATICA nn = 60; R = Table[0, {nn}]; s = 0; Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s < nn, R[[s+1]] = k], {k, Prime[3*nn]}]; Rest[R] (* Jean-François Alcover, Dec 02 2018, after T. D. Noe in A104272 *) CROSSREFS Cf. A056171, A056169, A000720, A000142, A080359. Cf. A104272 (Ramanujan primes). Sequence in context: A155151 A104788 A249720 * A026320 A144206 A335675 Adjacent sequences:  A080357 A080358 A080359 * A080361 A080362 A080363 KEYWORD nonn AUTHOR Labos Elemer, Feb 21 2003 EXTENSIONS Definition corrected by Jonathan Sondow, Aug 10 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 22:42 EST 2021. Contains 349567 sequences. (Running on oeis4.)