Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 May 19 2024 03:16:56
%S 0,-1,0,-1,-1,-1,-1,-1,-1,-1,0,-1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
%T -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,-1,1,-1,-1,
%U -1,-1,-1,2,-1,3,-1,-1,-1,4,-1,-1,-1,-1
%N Local ranking function for totally balanced binary sequences: if n's binary expansion is totally balanced (A080116(n)=1), then a(n) is its zero-based position among A000108((A000523(n)+1)/2) lexicographically ordered totally balanced binary sequences of the same width, otherwise -1.
%C Maple procedure CatalanRank is adapted from the algorithm 3.23 of the CAGES book.
%H D. L. Kreher and D. R. Stinson, <a href="https://web.archive.org/web/20031209184259/http://www.math.mtu.edu/~kreher/cages.html">Combinatorial Algorithms, Generation, Enumeration and Search</a>, CRC Press, 1998.
%e We have Cat(0)=1 totally balanced binary sequences of length 2*0: 0, thus a(0)=0, Cat(1)=1 of length 2*1: 10, thus a(2)=0, Cat(2)=2 of length 2*2: 1010 (= 10.) and 1100 (= 12.), thus a(10)=0 and a(12)=1, plus altogether Cat(3)=5 totally balanced binary sequences of length 2*3: 101010 (= 42), 101100 (= 44), 110010 (= 50), 110100 (= 52), 111000 (= 56), thus a(42)=0, a(44)=1, a(50)=2, a(52)=3 and a(56)=4. Et cetera.
%p A080301 := n -> `if`(0 = A080116(n),-1,CatalanRank((A000523(n)+1)/2,n));
%p CatalanRank := proc(n,aa) local y,r,lo,a; a := aa; r := 0; y := -1; lo := 0; while (a > 0) do if(0 = (a mod 2)) then r := r+1; lo := lo + A009766(r,y); else y := y+1; fi; a := floor(a/2); od; RETURN((binomial(2*n,n)/(n+1))-(lo+1)); end;
%Y Used to compute A080300. Cf. A009766, A000523.
%K sign
%O 0,51
%A _Antti Karttunen_, Feb 21 2003