Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Sep 08 2022 08:45:09
%S 1,35,871,19215,402591,8236095,166570111,3349906175,67183250431,
%T 1345516627455,26928850135551,538762184167935,10777095520297471,
%U 215560428864815615,4311393762242888191,86229727095755178495
%N Expansion of 1/((1-x)(1-4x)(1-10x)(1-20x)).
%C Column k=3 in number triangle A080249.
%H Vincenzo Librandi, <a href="/A080250/b080250.txt">Table of n, a(n) for n = 0..300</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (35,-354,1120,-800).
%F G.f.: 1/((1-x)*(1-4*x)*(1-10*x)*(1-20*x)).
%F a(n) = (1350*20^n-950*10^n+114*4^n-1)/513.
%F a(0)=1, a(1)=35, a(2)=871, a(3)=19215, a(n) = 35*a(n-1) -354*a(n-2) +1120*a(n-3) -800*a(n-4). - _Harvey P. Dale_, Apr 25 2011
%t CoefficientList[Series[1/((1-x)(1-4x)(1-10x)(1-20x)),{x,0,20}],x] (* or *) Table[(1350*20^n-950*10^n+114*4^n-1)/513,{n,0,20}] (* or *) LinearRecurrence[{35,-354,1120,-800},{1,35,871,19215},21] (* _Harvey P. Dale_, Apr 25 2011 *)
%o (Magma) [(1350*20^n-950*10^n+114*4^n-1)/513: n in [0..20]]; // _Vincenzo Librandi_, Aug 05 2013
%Y Cf. A080249, A016225, A000292.
%K easy,nonn
%O 0,2
%A _Paul Barry_, Feb 17 2003
%E Corrected by _T. D. Noe_, Nov 08 2006