The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080239 Antidiagonal sums of triangle A035317. 12

%I #73 Sep 08 2022 08:45:09

%S 1,1,2,3,6,9,15,24,40,64,104,168,273,441,714,1155,1870,3025,4895,7920,

%T 12816,20736,33552,54288,87841,142129,229970,372099,602070,974169,

%U 1576239,2550408,4126648,6677056,10803704,17480760,28284465,45765225,74049690

%N Antidiagonal sums of triangle A035317.

%C Convolution of Fibonacci sequence with sequence (1, 0, 0, 0, 1, 0, 0, 0, 1, ...).

%C There is an interesting relation between a(n) and the Fibonacci sequence f(n). Sqrt(a(4n-2)) = f(2n). By using this fact we can calculate the value of a(n) by the following (1),(2),(3),(4) and (5). (1) a(1) = 1. (2) If n = 2 (mod 4), then a(n) = f((n+2)/2)^2. (3) If n = 3 (mod 4), then a(n) = (f((n+5)/2)^2-2f((n+1)/2)^2-1)/3. (4) If n = 0 (mod 4), then a(n) = (f((n+4)/2)^2+f(n/2)^2-1)/3. (5) If n = 1 (mod 4), then a(n) = (2f((n+3)/2)^2-f((n-1)/2)^2+1)/3. - Hiroshi Matsui and _Ryohei Miyadera_, Aug 08 2006

%C Sequences of the form s(0)=a, s(1)=b, s(n) = s(n-1) + s(n-2) + k if n mod m = p, else s(n) = s(n-1) + s(n-2) will have a form fib(n-1)*a + fib(n)*b + P(x)*k. a(n) is the P(x) sequence for m=4...s(n) = fib(n)*a + fib(n-1)*b + a(n-4-p)*k. - _Gary Detlefs_, Dec 05 2010

%C A different formula for a(n) as a function of the Fibonacci numbers f(n) may be conjectured. The pattern is of the form a(n) = f(p)*f(p-q) - 1 if n mod 4 = 3, else f(p)*f(p-q) where p = 2,2,4,4,4,4,6,6,6,6,8,8,8,8... and q = 0,1,3,2,0,1,3,2,0,1,3,2... p(n) = 2 * A002265(n+4) = 2*(floor((n+3)/2) - floor((n+3)/4)) (see comment by _Jonathan Vos Post_ at A002265). A general formula for sequences having period 4 with terms a,b,c,d is given in A121262 (the discrete Fourier transform, as for all periodic sequences) and is a function of t(n)= 1/4*(2*cos(n*Pi/2) + 1 + (-1)^n). r4(a,b,c,d,n) = a*t(n+3) + b*t(n+2) + c*t(n+1) + d*t(n). This same formula may be used to subtract the 1 at n mod 4 = 3. a(n) = f(p(n))*f(p(n) - r4(1,0,3,2,n)) - r4(0,0,1,0,n). - _Gary Detlefs_, Dec 09 2010

%C This sequence is the sequence B4,1 on p. 34 of "Pascal-like triangles and Fibonacci-like sequences" in the references. In this article the authors treat more general sequences that have this sequence as an example. - Hiroshi Matsui and _Ryohei Miyadera_, Apr 11 2014

%C It is easy to see that a(n) = a(n-4) + f(n), where f(n) is the Fibonacci sequence. By using this repeatedly we have for a natural number m

%C a(4m) =a(4) + f(4m) + f(4m-4) + ... + f(8),

%C a(4m+1) = a(1) + f(4m) + f(4m-4) + ... + f(5),

%C a(4m+2) = a(2) + f(4m) + f(4m-4) + ... + f(6) and

%C a(4m+3) = a(3) + f(4m) + f(4m-4) + ... + f(7).

%C - Wataru Takeshita and _Ryohei Miyadera_, Apr 11 2014

%C a(n-1) counts partially ordered partitions of (n-1) into (1,2,3,4) where the position (order) of 2's is unimportant. E.g., a(5)=6 (n-1)=4 These are (4),(31),(13),(22),(211,121,112=one),(1111). - _David Neil McGrath_, May 12 2015

%H Reinhard Zumkeller, <a href="/A080239/b080239.txt">Table of n, a(n) for n = 1..1000</a>

%H H. Matsui et al., <a href="http://www.fq.math.ca/Problems/elementary45-2.pdf">Problem B-1019</a>, Fibonacci Quarterly, Vol. 45, Number 2; 2007; p. 182.

%H H. Matsui and R. Miyadera et al., <a href="http://dx.doi.org/10.1017/S0025557200007129">Pascal-like triangles and Fibonacci-like sequences</a>, The Mathematical Gazette, Vol. 94, Number 529; March 2010; pp. 27-41.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,1,-1,-1).

%F G.f.: x/((1-x^4)(1 - x - x^2)) = x/(1 - x - x^2 - x^4 + x^5 + x^6).

%F a(n) = a(n-1) + a(n-2) + a(n-4) - a(n-5) - a(n-6).

%F a(n) = Sum_{j=0..floor(n/2)} Sum_{k=0..floor((n-j)/2)} binomial(n-j-2k, j-2k} for n>=0.

%F Another recurrence is given in the Maple code.

%F If n mod 4 = 1 then a(n) = a(n-1) + a(n-2) + 1, else a(n)= a(n-1) + a(n-2). - _Gary Detlefs_, Dec 05 2010

%F a(4n) = A058038(n) = Fibonacci(2n+2)*Fibonacci(2n).

%F a(4n+1) = A081016(n) = Fibonacci(2n+2)*Fibonacci(2n+1).

%F a(4n+2) = A049682(n+1) = Fibonacci(2n+2)^2.

%F a(4n+3) = A081018(n+1) = Fibonacci(2n+2)*Fibonacci(2n+3).

%F a(n) = 8*a(n-4) - 8*a(n-8) + a(n-12), n>12. - _Gary Detlefs_, Dec 10 2010

%F a(n+1) = a(n) + a(n-1) + A011765(n+1). - _Reinhard Zumkeller_, Jan 06 2012

%F a(n) = Sum_{k=0..floor((n-1)/4)} Fibonacci(n-4*k). - _Johannes W. Meijer_, Apr 19 2012

%p f:=proc(n) option remember; local t1; if n <= 2 then RETURN(1); fi: if n mod 4 = 1 then t1:=1 else t1:=0; fi: f(n-1)+f(n-2)+t1; end; [seq(f(n), n=1..100)]; # _N. J. A. Sloane_, May 25 2008

%p with(combinat): f:=n-> fibonacci(n): p:=n-> 2*(floor((n+3)/2)-floor((n+3)/4)): t:=n-> 1/4*(2*cos(n*Pi/2)+1+(-1)^n): r4:=(a,b,c,d,n)-> a*t(n+3)+b*t(n+2)+c*t(n+1)+d*t(n): seq(f(p(n))*f(p(n)-r4(1,0,3,2,n))-r4(0,0,1,0,n), n = 1..33); # _Gary Detlefs_, Dec 09 2010

%p with(combinat): a:=proc(n); add(fibonacci(n-4*k),k=0..floor((n-1)/4)) end: seq(a(n), n = 1..33); # _Johannes W. Meijer_, Apr 19 2012

%t (*f[n] is the Fibonacci sequence and a[n] is the sequence of A080239*) f[n_]:= f[n] =f[n-1] +f[n-2]; f[1]=1; f[2]=1; a[n_]:= Which[n==1, 1, Mod[n, 4]==2, f[(n+2)/2]^2, Mod[n, 4]==3, (f[(n+5)/2]^2 - 2f[(n + 1)/2]^2 -1)/3, Mod[n, 4]==0, (f[(n+4)/2]^2 + f[n/2]^2 -1)/3, Mod[n, 4] == 1, (2f[(n+3)/2]^2 -f[(n-1)/2]^2 +1)/3] (* Hiroshi Matsui and _Ryohei Miyadera_, Aug 08 2006 *)

%t a=0; b=0; lst={a,b}; Do[z=a+b+1; AppendTo[lst,z]; a=b; b=z; z=a+b; AppendTo[lst,z]; a=b; b=z; z=a+b; AppendTo[lst,z]; a=b; b=z; z=a+b; AppendTo[lst,z]; a=b; b=z,{n,4!}]; lst (* _Vladimir Joseph Stephan Orlovsky_, Feb 16 2010 *)

%t (* Let f[n] be the Fibonacci sequence and a2[n] the sequence A080239 expressed by another formula discovered by Wataru Takeshita and Ryohei Miyadera *)

%t f=Fibonacci; a2[n_]:= Block[{m, s}, s = Mod[n, 4]; m = (n-s)/4;

%t Which[n==1, 1, n==2, 1, n==3, 2, s==0, 3 + Sum[f[4 i], {i, 2, m}], s == 1, 1 + Sum[f[4i+1], {i, 1, m}], s==2, 1 + Sum[f[4i+2], {i, 1, m}], s == 3, 2 + Sum[f[4i+3], {i, 1, m}]]]; Table[a2[n], {n, 1, 40}] (* _Ryohei Miyadera_, Apr 11 2014, minor update by _Jean-François Alcover_, Apr 29 2014 *)

%t LinearRecurrence[{1, 1, 0, 1, -1, -1}, {1, 1, 2, 3, 6, 9}, 41] (* _Vincenzo Librandi_, Jun 07 2015 *)

%o (Haskell)

%o a080239 n = a080239_list !! (n-1)

%o a080239_list = 1 : 1 : zipWith (+)

%o (tail a011765_list) (zipWith (+) a080239_list $ tail a080239_list)

%o -- _Reinhard Zumkeller_, Jan 06 2012

%o (Magma) I:=[1,1,2,3,6,9]; [n le 6 select I[n] else Self(n-1)+Self(n-2)+Self(n-4)-Self(n-5)-Self(n-6): n in [1..50]]; // _Vincenzo Librandi_, Jun 07 2015

%o (PARI) vector(40, n, f=fibonacci; sum(k=0,((n-1)\4), f(n-4*k))) \\ _G. C. Greubel_, Jul 13 2019

%o (Sage) [sum(fibonacci(n-4*k) for k in (0..floor((n-1)/4))) for n in (1..40)] # _G. C. Greubel_, Jul 13 2019

%o (GAP) List([1..40], n-> Sum([0..Int((n-1)/4)], k-> Fibonacci(n-4*k) )); # _G. C. Greubel_, Jul 13 2019

%Y Cf. A000045, A004695, A026636, A026647, A035317.

%K easy,nonn

%O 1,3

%A _Paul Barry_, Feb 11 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 13:07 EDT 2024. Contains 372533 sequences. (Running on oeis4.)