login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that gcd(C(2*k,k), C(3*k,k), C(4*k,k), ..., C((k+1)*k,k) ) = 1.
2

%I #17 Feb 28 2020 01:27:23

%S 29,59,69,83,89,104,119,125,131,139,153,164,167,179,181,194,197,209,

%T 219,230,233,251,259,263,272,279,285,305,307,311,314,329,335,339,356,

%U 359,363,373,379,384,389,395,398,407,417,419,428,439,441,454,455,461

%N Numbers k such that gcd(C(2*k,k), C(3*k,k), C(4*k,k), ..., C((k+1)*k,k) ) = 1.

%C a(n) = A051283(n) - 1 (conjectured). - _Ralf Stephan_, Feb 20 2004

%t Select[Range[500], GCD@@Table[Binomial[k*#, # ], {k, 2, #+1}]==1&]

%o (Haskell)

%o a080170 n = a080170_list !! (n-1)

%o a080170_list = filter f [1..] where

%o f x = foldl1 gcd (map (flip a007318' x) [2*x, 3*x .. x*(x+1)]) == 1

%o -- _Reinhard Zumkeller_, May 30 2013

%o (PARI) isok(k) = gcd(vector(k, i, binomial(k+i*k,k))) == 1; \\ _Jinyuan Wang_, Feb 28 2020

%Y Cf. A007318, A051283.

%K nonn

%O 1,1

%A _Benoit Cloitre_, Jan 31 2003