login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=2, r=3, I={0}.
1

%I #15 Apr 16 2024 03:16:09

%S 1,0,1,2,6,11,23,51,113,244,526,1142,2483,5389,11687,25358,55034,

%T 119430,259151,562340,1220276,2647993,5746085,12468857,27057165,

%U 58713537,127407187,276470942,599936262,1301849496,2824986880,6130163753

%N Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=2, r=3, I={0}.

%D D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

%H Vladimir Baltic, <a href="http://pefmath.etf.rs/vol4num1/AADM-Vol4-No1-119-135.pdf">On the number of certain types of strongly restricted permutations</a>, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (2010), 119-135

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,3,4,5,1,-2,-1,-1,-1).

%F a(n) = 2a(n-2)+3a(n-3)+4a(n-4)+5a(n-5)+a(n-6)-2a(n-7)-a(n-8)-a(n-9)-a(n-10).

%F G.f.: -(x^5+x^3+x^2-1)/(x^10+x^9+x^8+2*x^7-x^6-5*x^5-4*x^4-3*x^3-2*x^2+1)

%Y Cf. A002524-A002529, A072827, A072850-A072856, A079955-A080014.

%K nonn

%O 0,4

%A _Vladimir Baltic_, Feb 10 2003