login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=3, r=3, I={0,2}.
1

%I #11 Jul 30 2024 13:34:43

%S 1,0,1,1,5,9,23,39,97,197,465,969,2161,4605,10202,22051,48438,105028,

%T 229692,499620,1091268,2376641,5185742,11299467,24645179,53718931,

%U 117144203,255371099,556824105,1213941393,2646824821,5770590379

%N Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=3, r=3, I={0,2}.

%C Also, number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=3, r=3, I={-2,0}.

%D D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

%H Vladimir Baltic, <a href="http://pefmath.etf.rs/vol4num1/AADM-Vol4-No1-119-135.pdf">On the number of certain types of strongly restricted permutations</a>, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (2010), 119-135

%H <a href="/index/Rec#order_20">Index entries for linear recurrences with constant coefficients</a>, signature (0, 2, 2, 4, 6, 11, 1, -6, -4, -4, -8, -10, 1, 7, 0, -2, 0, 2, 0, -1).

%F a(n) = 2*a(n-2) +2*a(n-3) +4*a(n-4) +6*a(n-5) +11*a(n-6) +a(n-7) -6*a(n-8) -4*a(n-9) -4*a(n-10) -8*a(n-11) -10*a(n-12) +a(n-13) +7*a(n-14) -2*a(n-16) +2*a(n-18) -a(n-20).

%F G.f.: -(x^3+1)*(x^11-x^9-2*x^8-x^7+2*x^6+x^4+2*x^3+x^2-1)/((x^18 -x^17 -2*x^16 +3*x^15 +x^14 -4*x^13 -4*x^12 +7*x^11 +7*x^10 -6*x^9 +3*x^8 +7*x^7 -4*x^6 -4*x^5 -3*x^4 +x^3 -2*x^2 -x+1) *(x^2+x+1)).

%Y Cf. A002524-A002529, A072827, A072850-A072856, A079955-A080014.

%K nonn

%O 0,5

%A _Vladimir Baltic_, Feb 17 2003