login
Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=1, r=5, I={1,2}.
0

%I #16 Apr 16 2024 03:27:49

%S 1,1,1,1,2,4,7,10,14,21,34,55,86,131,200,310,485,757,1174,1815,2810,

%T 4362,6778,10524,16323,25310,39260,60924,94549,146706,227599,353093,

%U 547826,850005,1318859,2046257,3174775,4925699,7642389,11857510

%N Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=1, r=5, I={1,2}.

%C Number of compositions (ordered partitions) of n into elements of the set {1,4,5,6}.

%D D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

%H Vladimir Baltic, <a href="http://pefmath.etf.rs/vol4num1/AADM-Vol4-No1-119-135.pdf">On the number of certain types of strongly restricted permutations</a>, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (2010), 119-135.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,1,1).

%F a(n) = a(n-1)+a(n-4)+a(n-5)+a(n-6).

%F G.f.: -1/(x^6+x^5+x^4+x-1).

%Y Cf. A002524-A002529, A072827, A072850-A072856, A079955-A080014.

%K nonn,easy

%O 0,5

%A _Vladimir Baltic_, Feb 19 2003