%I #11 Dec 03 2021 19:32:00
%S 1,14,2567,79544,1596800,20789082,196933710,1450606028,8719846960,
%T 44321202192,195717772000,767025716736,2713659864832,8787898861568
%N Solution to the Dancing School Problem with 13 girls and n+13 boys: f(13,n).
%C f(g,h) = per(B), the permanent of the (0,1)-matrix B of size g X g+h with b(i,j)=1 if and only if i <= j <= i+h. See A079908 for more information.
%C For fixed g, f(g,n) is polynomial in n for n >= g-2. See reference.
%D Jaap Spies, Dancing School Problems, Nieuw Archief voor Wiskunde 5/7 nr. 4, Dec 2006, pp. 283-285.
%H Jaap Spies, <a href="http://www.nieuwarchief.nl/serie5/pdf/naw5-2006-07-4-283.pdf">Dancing School Problems</a>, Nieuw Archief voor Wiskunde 5/7 nr. 4, Dec 2006, pp. 283-285.
%H Jaap Spies, <a href="http://www.jaapspies.nl/mathfiles/dancingschool.pdf">Dancing School Problems, Permanent solutions of Problem 29</a>.
%Y Cf. A079908-A079928.
%K nonn,more
%O 0,2
%A _Jaap Spies_, Jan 28 2003
%E Corrected by _Jaap Spies_, Feb 01 2004