login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Values of x+y where p runs through the primes of form 4k+1 and p=x^2+y^2, 0<=x<=y.
4

%I #17 Jan 15 2015 09:53:07

%S 3,5,5,7,7,9,9,11,11,13,13,11,13,15,15,17,17,15,19,19,15,17,21,19,17,

%T 23,23,21,19,25,25,25,23,25,25,27,25,21,23,29,29,27,25,29,27,31,31,33,

%U 33,25,31,29,35,35,29,35,31,35,27,31,37,29,35,39,37,39,37,33,39,37,41,33

%N Values of x+y where p runs through the primes of form 4k+1 and p=x^2+y^2, 0<=x<=y.

%C Also values of y where p runs through the primes of form 4k+1 and 2*p=x^2+y^2, 0 <x<y. - _Colin Barker_, Jul 07 2014

%H Robert Israel, <a href="/A079886/b079886.txt">Table of n, a(n) for n = 1..10000</a>

%p N:= 100: # to get values corresponding to primes <= 4*N+1

%p P:= select(isprime, [seq(4*i+1,i=0..N)]):

%p F:= proc(p) local f; f:= GaussInt:-GIfactors(p)[2][1][1]; abs(Re(f))+abs(Im(f)) end proc:

%p map(F,P); # _Robert Israel_, Jul 07 2014

%t pp = Select[ Range[200] // Prime, Mod[#, 4] == 1 &]; f[p_] := x + y /. ToRules[ Reduce[0 <= x <= y && p == x^2 + y^2, {x, y}, Integers]]; A079886 = f /@ pp (* _Jean-François Alcover_, Jan 15 2015 *)

%Y Cf. A002330, A002331, A002313, A002144, A079887.

%K nonn

%O 1,1

%A _Benoit Cloitre_, Jan 13 2003