login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partition of positive integers into shortest possible groups, starting with (1), (2,3), (4,5,6), (7,8,9,10,11), such that a(n) = the sum of the terms of the n-th group is a multiple of a(n-1) and a(n) > a(n-1).
5

%I #8 Dec 05 2013 19:55:58

%S 1,5,15,45,495,16830,4358970,1159486020,196818113950920,

%T 3151092455396895169036800,136084696980410308844836382925537725529600,

%U 9996588705394796239042140065772174939073840705818917941136700639014745600

%N Partition of positive integers into shortest possible groups, starting with (1), (2,3), (4,5,6), (7,8,9,10,11), such that a(n) = the sum of the terms of the n-th group is a multiple of a(n-1) and a(n) > a(n-1).

%C Dropping requirement a(n) > a(n-1) leads to a different partition: (1), (2, 3), (4, 5, 6), (7, 8), ... - see A160275.

%C For partition starting with (1), (2), (3,4,5), see A075631.

%F a(n) = A000217(A079801(n)) - A000217(A079801(n-1)) [From R. J. Mathar and Max Alekseyev]

%o (PARI) A000217(n)= { return(n*(n+1)/2) ; } upto(first,osum,strict)= { local(trifirst,tstsu) ; trifirst=A000217(first-1) ; for(lst=first+1,first+100000000, tstsu=A000217(lst)-trifirst ; if(strict==1 && tstsu<= osum, next ; ) ; if( tstsu % osum == 0, return(lst) ; ) ; ) ; return(-1) ; } { a=1 ; first=2 ; for(n=2,40, last=upto(first,a,1) ; a=A000217(last)-A000217(first-1) ; print(a,",") ; first=last+1 ; ) ; - _R. J. Mathar_, May 06 2006

%Y Cf. A079799, A079800, A079801, A075631.

%K nonn

%O 1,2

%A _Amarnath Murthy_, Feb 05 2003

%E More terms from _R. J. Mathar_, May 06 2006

%E Edited and extended by _Max Alekseyev_, May 08 2009