login
Triangle of denominators of numbers related to an approximation problem connected with Riemann hypothesis.
2

%I #13 Aug 10 2014 06:01:46

%S 1,1,3,1,2,3,1,2,3,5,1,2,3,5,7,1,2,3,11,5,7,1,2,13,3,11,5,7,1,2,11,3,

%T 11,5,6,7,1,2,13,3,13,5,6,7,11,1,2,13,3,13,5,6,7,10,11

%N Triangle of denominators of numbers related to an approximation problem connected with Riemann hypothesis.

%C For each n there are n rational numbers f(n,i)/g(n,i) 1 <= i <= n; for g(n,i) see A079724 (see Link Table 4).

%D Triangle of rationals starts:

%D 1;

%D 1, 1/3;

%D 1, 1/2, 1/3;

%D 1, 1/2, 1/3, 1/5;

%D 1, 1/2, 1/3, 1/5, 1/7;

%D 1, 1/2, 1/3, 3/11, 1/5, 1/7;

%D ...

%H B. Landreau and F. Richard, <a href="http://www.emis.de/journals/EM/expmath/volumes/11/11.3/Landreau349_360.pdf">Le critère de Beurling et Nyman pour l'hypothèse de Riemann: aspects numériques</a>, Exper. Math., 11 (2002), 349-360.

%Y Cf. A079722, A079724 (numerators).

%K nonn,frac,tabl

%O 1,3

%A _N. J. A. Sloane_, Feb 17 2003

%E Definition corrected (was numerators) by _Michel Marcus_, Aug 10 2014