login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the 2-adic valuation of the n-th even nontotient.
1

%I #16 Aug 23 2024 09:05:38

%S 1,1,1,1,1,1,2,1,2,1,1,1,1,1,1,1,2,1,1,1,3,1,1,1,1,1,1,2,1,1,1,1,1,1,

%T 1,2,1,2,1,3,1,1,1,1,1,2,1,1,1,1,4,2,1,1,1,1,1,1,2,1,1,1,2,1,1,3,1,1,

%U 1,1,1,2,1,1,2,1,1,1,2,1,2,1,1,1,1,1,3,1,1,2,3,1,4

%N a(n) is the 2-adic valuation of the n-th even nontotient.

%H Charles R Greathouse IV, <a href="/A079700/b079700.txt">Table of n, a(n) for n = 1..10000</a>

%H Maxim Rytin, <a href="http://library.wolfram.com/infocenter/MathSource/696/">Finding the Inverse of Euler Totient Function</a> (1999).

%F a(n) = A007814(A005277(n)). - _Michel Marcus_, Jul 01 2017

%e A005277(10)=86, therefore a(10)=1.

%t IntegerExponent[Select[Range[2, 500, 2], invphi[#] == {}&], 2] (* _Jean-François Alcover_, Jul 01 2017, using Maxim Rytin's invphi function *)

%o (PARI) lista(nn)=forstep(n=2, nn, 2, if (!istotient(n), print1(valuation(n, 2), ", "));); \\ _Michel Marcus_, Jul 01 2017

%Y Cf. A005277, A007814.

%K nonn

%O 1,7

%A _Jon Perry_, Jan 31 2003

%E More terms from _Jean-François Alcover_, Jul 01 2017

%E Offset corrected by _Charles R Greathouse IV_, Jul 02 2017