login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Prime numbers using only the curved digits 0, 3, 6, 8 and 9.
6

%I #20 Mar 29 2023 08:58:52

%S 3,83,89,383,389,683,809,839,863,883,983,3083,3089,3389,3803,3833,

%T 3863,3889,3989,6089,6389,6689,6803,6833,6863,6869,6883,6899,6983,

%U 8009,8039,8069,8089,8093,8363,8369,8389,8609,8663,8669,8689,8693,8699,8803,8839

%N Prime numbers using only the curved digits 0, 3, 6, 8 and 9.

%C Intersection of A000040 and A072960. - _K. D. Bajpai_, Sep 01 2014

%H K. D. Bajpai, <a href="/A079652/b079652.txt">Table of n, a(n) for n = 1..11740</a>

%H Chris K. Caldwell and G. L. Honaker, Jr., <a href="https://primes.utm.edu/curios/page.php?short=30689">30689</a>, Prime Curios!

%H Chris K. Caldwell and G. L. Honaker, Jr., <a href="https://primes.utm.edu/curios/page.php?short=90863">90863</a>, Prime Curios!

%p N:= 4: # to get all terms with up to N digits

%p Digs:= {0,3,6,8,9}:

%p A:= NULL:

%p for d from 1 to N do

%p C:= combinat[cartprod]([Digs minus {0},Digs $(d-1)]);

%p while not C[finished] do

%p L:= C[nextvalue]();

%p x:= add(L[i]*10^(d-i),i=1..d);

%p if isprime(x) then A:= A,x fi

%p od

%p od:

%p A; # _Robert Israel_, Aug 31 2014

%t Select[ Range[8850], PrimeQ[ # ] && Union[ Join[ IntegerDigits[ # ], {0, 3, 6, 8, 9}]] == {0, 3, 6, 8, 9} &]

%t Select[Prime[Range[5000]], Intersection[IntegerDigits[#], {1, 2, 4, 5, 7}] == {} &] (* _K. D. Bajpai_, Sep 01 2014 *)

%t Select[FromDigits/@Tuples[{0,3,6,8,9},4],PrimeQ] (* _Harvey P. Dale_, Sep 05 2022 *)

%Y Cf. A072960, A028374.

%Y Cf. A034470.

%K base,nonn

%O 1,1

%A _Shyam Sunder Gupta_, Jan 23 2003