login
A079649
Numbers k such that k! + k^2 + k + 1 is prime.
2
0, 3, 5, 17, 24, 314, 15783
OFFSET
1,2
COMMENTS
a(8) > 17548. - J.W.L. (Jan) Eerland, Oct 06 2023
EXAMPLE
0!+0^2+0+1 = 1+1 = 2 which is prime, so a(1) = 0.
1!+1^2+1+1 = 1+1+1+1 = 4, which is not prime.
2!+2^2+2+1 = 2+4+2+1 = 8, which is not prime.
3!+3^2+3+1 = 6+9+3+1 = 19, which is prime, so a(2)=3.
MATHEMATICA
For[i = 0, i < 1000, If[PrimeQ[Factorial[i] + i^2 + i + 1] == True, Print[i]]; i++ ]
n=0; Monitor[Parallelize[While[True, If[PrimeQ[Factorial[n]+n^2+n+1], Print[n]]; n++]; n], n] (* J.W.L. (Jan) Eerland, Oct 06 2023 *)
CROSSREFS
Sequence in context: A025106 A333199 A203193 * A354724 A255401 A364959
KEYWORD
nonn,more
AUTHOR
Neil Fernandez, Jan 22 2003
EXTENSIONS
a(7) from J.W.L. (Jan) Eerland, Oct 06 2023
STATUS
approved