login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of coefficients in polynomials for partial sums of powers, scaled to produce integers: sum_i{1<=i<=m}i^(n-1) = sum_k{1<=k<=n}T(n,k)*m^k/A064538(n-1).
1

%I #39 Jul 14 2020 23:23:14

%S 1,1,1,1,3,2,0,1,2,1,-1,0,10,15,6,0,-1,0,5,6,2,1,0,-7,0,21,21,6,0,2,0,

%T -7,0,14,12,3,-3,0,20,0,-42,0,60,45,10,0,-3,0,10,0,-14,0,15,10,2,5,0,

%U -33,0,66,0,-66,0,55,33,6,0,10,0,-33,0,44,0,-33,0,22,12,2,-691,0,4550,0,-9009,0,8580,0,-5005,0,2730,1365,210

%N Triangle of coefficients in polynomials for partial sums of powers, scaled to produce integers: sum_i{1<=i<=m}i^(n-1) = sum_k{1<=k<=n}T(n,k)*m^k/A064538(n-1).

%C Rosinger connects this sequence to Weisstein's Faulhaber's Formula page. Rosinger also discusses, without reference to OEIS, (1.1) A000217 Triangular numbers: a(n) = C(n+1,2) = n(n+1)/2 = 0+1+2+...+n; (1.2) A000330 Square pyramidal numbers: 0^2+1^2+2^2+...+n^2 = n(n+1)(2n+1)/6; (1.4) A033312 n! - 1 [with different offset and the formula 1*1! + 2*2! + 3*3! + ...]; (1.4) A007489 Sum of k!, k=1..n. - _Jonathan Vos Post_, Feb 22 2007

%D Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, p. 106, 1996.

%H R. Mestrovic, <a href="http://arxiv.org/abs/1211.4570">A congruence modulo n^3 involving two consecutive sums of powers and its applications</a>, arXiv:1211.4570 [math.NT], 2012. - From _N. J. A. Sloane_, Jan 03 2013

%H R. Mestrovic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Mestrovic/mes4.html">On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers</a>, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.

%H Elemer E. Rosinger, <a href="http://arXiv.org/abs/math.GM/0702605">Synthesizing Sums</a>, arXiv:math/0702605 [math.GM], 2007.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PowerSum.html">Power Sum</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FaulhabersFormula.html">Faulhaber's Formula.</a>

%F T(n, k)=T(n-1, k-1)*(n-1)*A064538(n-1)/(k*A064538(n-2)) for k>1. T(n, 1)=A064538(n-1)-sum_k{2<=k<=n} T(n, k) for n>1; T(1, 1)=1.

%e Triangle T(n, k) begins:

%e n\k 1 2 3 4 5 6 7 8 9 10 ...

%e 1: 1

%e 2: 1 1

%e 3: 1 3 2

%e 4: 0 1 2 1

%e 5: -1 0 10 15 6

%e 6: 0 -1 0 5 6 2

%e 7: 1 0 -7 0 21 21 6

%e 8: 0 2 0 -7 0 14 12 3

%e 9: -3 0 20 0 -42 0 60 45 10

%e 10: 0 -3 0 10 0 -14 0 15 10 2

%e ... Reformatted. - _Wolfdieter Lang_, Feb 02 2015

%e For example row n=7: partial sums of 6th powers (A000540)

%e 1^6+2^6+...+m^6 = (m-7m^3+21m^5+21m^6+6m^7)/42.

%p T := proc(n, k) option remember; local A, B;

%p A := proc(n) option remember; denom((bernoulli(n+1,x)-bernoulli(n+1))/(n+1)) end:

%p B := proc(n) option remember; add(T(n,j),j=2..n) end;

%p if k>1 then T(n-1,k-1)*(n-1)*A(n-1)/(k*A(n-2)) elif n>1 then A(n-1)-B(n) else 1 fi end: seq(print(seq(T(n,k),k=1..n)),n=1..10); # _Peter Luschny_, Feb 02 2015

%p # Alternative:

%p A079618row := proc(n) bernoulli(n,x); (subs(x=x+1,%)-subs(x=1,%))/n;

%p seq(coeff(numer(%),x,k), k=1..n) end:

%p seq(A079618row(n), n=1..13); # _Peter Luschny_, Jul 14 2020

%t T[n_, k_] := T[n, k] = Module[{A, B}, A[m_] := A[m] = Denominator[ Together[ (BernoulliB[m+1, x] - BernoulliB[m+1])/(m+1)]]; B[m_] := B[m] = Sum[T[m, j], {j, 2, m}]; Which[k>1, T[n-1, k-1]*(n-1)*A[n-1]/(k*A[n-2]), n>1, A[n-1] - B[n], True, 1]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* _Jean-François Alcover_, Sep 04 2015, after _Peter Luschny_ *)

%o (PARI) row(p) = {v = vector(p+1, k, (-1)^(k==p)*binomial(p+1, k)*bernfrac(p+1-k))/(p+1); lcmd = lcm(vector(#v, k, denominator(v[k]))); v*lcmd;}

%o tabl(nn) = for (n=0, nn, print(row(n))); \\ _Michel Marcus_, Feb 16 2016

%Y Cf. A064538, A000217, A000330, A007489, A033312.

%K sign,tabl

%O 1,5

%A _Henry Bottomley_, Jan 29 2003

%E Edited. Offset corrected from 0 to 1. Typo in formula corrected. - _Wolfdieter Lang_, Feb 02 2015