login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Totally multiplicative with p -> (p-1)*p, p prime.
2

%I #23 Oct 23 2022 02:54:05

%S 1,2,6,4,20,12,42,8,36,40,110,24,156,84,120,16,272,72,342,80,252,220,

%T 506,48,400,312,216,168,812,240,930,32,660,544,840,144,1332,684,936,

%U 160,1640,504,1806,440,720,1012,2162,96,1764,800,1632,624,2756,432,2200,336

%N Totally multiplicative with p -> (p-1)*p, p prime.

%C The Dirichlet inverse is 1, -2, -6, 0, -20, 12, -42, 0, 0, 40, -110, 0, -156, 84, 120, 0, -272, ..., i.e., the sequence defined by mu(n)*a(n). - _R. J. Mathar_, Dec 20 2011

%H Reinhard Zumkeller, <a href="/A079579/b079579.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) <= n^2.

%F a(n) = n iff n = 2^k.

%F a(n) = n*A003958(n).

%F Multiplicative sequence with a(p^e) = p^e*(p-1)^e for prime p. - _Jaroslav Krizek_, Nov 01 2009

%F Dirichlet g.f.: sum_{n>=1} a(n)/n^s = Product_{primes p} 1/(1+p^(1-s)-p^(2-s)). - _R. J. Mathar_, Dec 20 2011

%F From _Amiram Eldar_, Oct 23 2022: (Start)

%F Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(6)/(3*zeta(2)*zeta(3)) = 2*Pi^4/(945*zeta(3)) = A068468 / 3 = 0.171503... .

%F Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^2-p-1)) (A065488). (End)

%t f[p_, e_] := ((p - 1)*p)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* _Amiram Eldar_, Oct 23 2022 *)

%o (Haskell)

%o a079579 1 = 1

%o a079579 n = product $ zipWith (*) pfs $ map (subtract 1) pfs

%o where pfs = a027746_row n

%o -- _Reinhard Zumkeller_, Jan 05 2012

%o (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]*(f[i,1]-1))^f[i,2]); } \\ _Amiram Eldar_, Oct 23 2022

%Y Cf. A003958, A008683, A027746, A065488, A068468.

%K nonn,mult

%O 1,2

%A _Reinhard Zumkeller_, Jan 24 2003