login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular array: T(n,1) = T(n,n) = n and T(n,k) = lcm(T(n-1,k-1), T(n-1,k)) for 1 < k < n.
1

%I #11 Apr 25 2018 13:58:07

%S 1,2,2,3,2,3,4,6,6,4,5,12,6,12,5,6,60,12,12,60,6,7,60,60,12,60,60,7,8,

%T 420,60,60,60,60,420,8,9,840,420,60,60,60,420,840,9,10,2520,840,420,

%U 60,60,420,840,2520,10,11,2520,2520,840,420,60,420,840,2520,2520,11,12

%N Triangular array: T(n,1) = T(n,n) = n and T(n,k) = lcm(T(n-1,k-1), T(n-1,k)) for 1 < k < n.

%C T(2*n-1,n) = A058312(n-1) for n <= 13.

%e Triangle begins:

%e 1

%e 2 2

%e 3 2 3

%e 4 6 6 4

%e 5 12 6 12 5

%e 6 60 12 12 60 6

%e 7 60 60 12 60 60 7

%o (PARI) T(n,k) = if ((k==1) || (k==n), n, lcm(T(n-1,k-1), T(n-1,k)));

%o tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n,k), ", ")); print); \\ _Michel Marcus_, Apr 25 2018

%Y Cf. A080046.

%Y T(n, 2) = A003418(n-1) for n > 2.

%K nonn,tabl

%O 1,2

%A _Reinhard Zumkeller_, Jan 22 2003