login
A079527
a(n) = floor( exp(H_n)*log(H_n) ).
3
0, 1, 3, 5, 8, 10, 12, 15, 17, 20, 22, 25, 27, 30, 33, 35, 38, 41, 43, 46, 49, 52, 55, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156, 160, 163, 166, 169, 172, 175, 178
OFFSET
1,3
LINKS
J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, arXiv:math/0008177 [math.NT], 2000-2001; Am. Math. Monthly 109 (#6, 2002), 534-543.
MATHEMATICA
a[n_] := Exp[HarmonicNumber[n]] Log[HarmonicNumber[n]] // Floor;
Array[a, 64] (* Jean-François Alcover, Oct 08 2018 *)
PROG
(PARI) {h(n) = sum(k=1, n, 1/k)};
vector(80, n, floor( exp(h(n))*log(h(n))) ) \\ G. C. Greubel, Jan 15 2019
(Magma) [Floor(Exp(HarmonicNumber(n))*Log(HarmonicNumber(n))): n in [1..80]]; // G. C. Greubel, Jan 15 2019
(Sage) [floor(exp(harmonic_number(n))*log(harmonic_number(n))) for n in (1..80)] # G. C. Greubel, Jan 15 2019
CROSSREFS
H_n = sum of harmonic series (see A002387).
Cf. A079526.
Sequence in context: A184655 A090846 A195170 * A287236 A305378 A362935
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 22 2003
STATUS
approved