Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Oct 21 2022 21:38:18
%S 0,8,320,3672,18944,65000,174528,397880,806912,1498824,2600000,
%T 4269848,6704640,10141352,14861504,21195000,29523968,40286600,
%U 53980992,71168984,92480000,118614888,150349760,188539832,234123264,288125000,351660608,425940120
%N a(n) = 8*n^3*((2*n-1)^2 - 4*n + 4).
%D L. U. Uko, A census of prime-order uniform step magic squares, Abstracts Amer. Math. Soc., Vol. 24, No. 1, 2003, #983-05-194.
%H G. C. Greubel, <a href="/A079504/b079504.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F From _G. C. Greubel_, Jan 18 2019: (Start)
%F G.f.: 8*x*(1 +34*x +234*x^2 +194*x^3 +17*x^4)/(1-x)^6.
%F E.g.f.: 8*x*(1 +19*x +57*x^2 +32*x^3 +4*x^4)*exp(x). (End)
%t Table[8*n^3*((2*n-1)^2-4*n+4), {n, 0, 30}] (* or *) LinearRecurrence[{6, -15,20,-15,6,-1, {0,8,320,3672,18944,65000}, 30] (* _G. C. Greubel_, Jan 18 2019 *)
%o (PARI) vector(30, n, n--; 8*n^3*((2*n-1)^2-4*n+4)) \\ _G. C. Greubel_, Jan 18 2019
%o (Magma) [8*n^3*((2*n-1)^2-4*n+4): n in [0..30]]; // _G. C. Greubel_, Jan 18 2019
%o (Sage) [8*n^3*((2*n-1)^2-4*n+4) for n in (0..30)] # _G. C. Greubel_, Jan 18 2019
%o (GAP) List([0..30], n -> 8*n^3*((2*n-1)^2-4*n+4)); # _G. C. Greubel_, Jan 18 2019
%Y Cf. A079503.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Jan 21 2003