login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least m > n having the same number of divisors as n, a(1) = 1.
6

%I #20 Oct 14 2021 15:21:56

%S 1,3,5,9,7,8,11,10,25,14,13,18,17,15,21,81,19,20,23,28,22,26,29,30,49,

%T 27,33,32,31,40,37,44,34,35,38,100,41,39,46,42,43,54,47,45,50,51,53,

%U 80,121,52,55,63,59,56,57,66,58,62,61,72,67,65,68,729,69,70,71,75,74,78,73

%N Least m > n having the same number of divisors as n, a(1) = 1.

%C tau(a(n)) = tau(n) and tau(i) <> tau(n), n < i < a(n) (tau = A000005);

%H Amiram Eldar, <a href="/A079427/b079427.txt">Table of n, a(n) for n = 1..10000</a>

%F a(A000040(k)) = A079428(A000040(k)) = A000040(k+1), as A000005(p)=2 for primes p.

%F a(n) = A171937(n) + n. - _Ridouane Oudra_, Sep 14 2021

%e Sets of divisors for n=10,11,12,13 and 14: D(10)={1,2,5,10}, D(11)={1,11}, D(12)={1,2,3,4,6,12}, D(13)={1,13}, D(14)={1,2,7,14}: therefore a(10)=14 (#D(10)=#D(14)).

%t a[1] = 1; a[n_] := Module[{m = n+1, d=DivisorSigma[0, n]}, While[DivisorSigma[0, m] != d, m++]; m]; Array[a, 100] (* _Amiram Eldar_, Feb 03 2020 *)

%o (PARI) a(n) = if (n==1, 1, my(m=n+1, nd=numdiv(n)); while(numdiv(m) != nd, m++); m); \\ _Michel Marcus_, Sep 14 2021

%o (Python)

%o from sympy import divisors

%o def a(n):

%o if n == 1: return 1

%o divisorsn, m = len(divisors(n)), n + 1

%o while len(divisors(m)) != divisorsn: m += 1

%o return m

%o print([a(n) for n in range(1, 72)]) # _Michael S. Branicky_, Sep 14 2021

%Y Cf. A000005, A112275, A112276.

%Y Cf. A171937.

%K nonn

%O 1,2

%A _Reinhard Zumkeller_, Jan 08 2003